Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-Barrels and Arcs

Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-Barrels and Arcs Previous simulations showed that the β-hairpin antimicrobial peptide (AMP) protegrin-1 can form stable octameric β-barrels and tetrameric arcs (half barrels) in both implicit and explicit membranes. Here, we extend this investigation to several AMPs of similar structure: tachyplesin, androctonin, polyphemusin, gomesin, and the retrocyclin θ-defensin. These peptides form short β-hairpins stabilized by 2–3 disulfide bonds. We also examine synthetic β-sheet peptides selected from a combinatorial library for their ability or inability to form pores in lipid membranes. When heptameric, octameric, and decameric β-barrels and tetrameric arcs of these peptides were embedded in pre-formed neutral or anionic lipid pores (i.e., pores in neutral or anionic membranes, respectively), a variety of behaviors and membrane binding energies were observed. Due to the cationic charge of the peptides, more favorable transfer energies and more stable binding were observed in anionic than neutral pores. The synthetic peptides bound very strongly and formed stable barrels and arcs in both neutral and anionic pores. The natural AMPs exhibited unfavorable or marginally favorable binding energy and kinetic stability in neutral pores, consistent with the lower hemolytic activity of some of them compared with protegrin-1. Binding to anionic pores was more favorable, but significant distortions of the barrel or arc structures were sometimes noted. These results are discussed in light of the available experimental data. The diversity of behaviors obtained makes it unlikely that the barrel and arc mechanisms are valid for the entire family of β-hairpin AMPs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-Barrels and Arcs

Loading next page...
 
/lp/springer_journal/implicit-membrane-investigation-of-the-stability-of-antimicrobial-TM3Tks1F8k
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9759-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial