Implications of exposure to dextran-coated and uncoated iron oxide nanoparticles to developmental toxicity in zebrafish

Implications of exposure to dextran-coated and uncoated iron oxide nanoparticles to developmental... Iron oxide nanoparticles (IONPS) have been widely investigated as a platform for a new class of multifunctional theranostic agents. They are considered biocompatible, and some formulations are already available in the market for clinical use. However, contradictory results regarding toxicity of IONPs raise a concern about the potential harm of these nanoparticles. Changes in the nanoparticle (NP) physicochemical properties or exposure media can significantly alter their behavior and, as a consequence, their toxic effects. Here, behavior and two-step RT-qPCR were employed to access the potential toxicological effects of dextran-coated IONPs (CLIO-NH2) and uncoated IONPs (UCIO) in zebrafish larvae. Animals were exposed for 7 days to NP solutions ranging from 0.1–100 μg/mL directly mixed to the system water. UCIO showed high decantation and instability in solution, altering zebrafish mortality but showing no alterations in behavior and molecular expression analysis. CLIO-NH2 exposure did not cause significant mortality or changes in hatching rate of zebrafish larvae; however, behavior and expression profiles of the group exposed to lower concentration (1 μg/mL) presented a tendency to decrease the locomotor activity and apoptotic pathway activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Nanoparticle Research Springer Journals

Implications of exposure to dextran-coated and uncoated iron oxide nanoparticles to developmental toxicity in zebrafish

Loading next page...
 
/lp/springer_journal/implications-of-exposure-to-dextran-coated-and-uncoated-iron-oxide-kpNftE1rTQ
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Materials Science; Nanotechnology; Inorganic Chemistry; Characterization and Evaluation of Materials; Physical Chemistry; Optics, Lasers, Photonics, Optical Devices
ISSN
1388-0764
eISSN
1572-896X
D.O.I.
10.1007/s11051-017-4074-5
Publisher site
See Article on Publisher Site

Abstract

Iron oxide nanoparticles (IONPS) have been widely investigated as a platform for a new class of multifunctional theranostic agents. They are considered biocompatible, and some formulations are already available in the market for clinical use. However, contradictory results regarding toxicity of IONPs raise a concern about the potential harm of these nanoparticles. Changes in the nanoparticle (NP) physicochemical properties or exposure media can significantly alter their behavior and, as a consequence, their toxic effects. Here, behavior and two-step RT-qPCR were employed to access the potential toxicological effects of dextran-coated IONPs (CLIO-NH2) and uncoated IONPs (UCIO) in zebrafish larvae. Animals were exposed for 7 days to NP solutions ranging from 0.1–100 μg/mL directly mixed to the system water. UCIO showed high decantation and instability in solution, altering zebrafish mortality but showing no alterations in behavior and molecular expression analysis. CLIO-NH2 exposure did not cause significant mortality or changes in hatching rate of zebrafish larvae; however, behavior and expression profiles of the group exposed to lower concentration (1 μg/mL) presented a tendency to decrease the locomotor activity and apoptotic pathway activation.

Journal

Journal of Nanoparticle ResearchSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off