Implication of the C-Terminal Region of the α-Subunit of Voltage-gated Sodium Channels in Fast Inactivation

Implication of the C-Terminal Region of the α-Subunit of Voltage-gated Sodium Channels in Fast... The α-subunit of both the human heart (hH1) and human skeletal muscle (hSkM1) sodium channels were expressed in a mammalian expression system. The channels displayed slow (hH1) and fast (hSkM1) current decay kinetics similar to those seen in native tissues. Hence, the aim of this study was to identify the region on the α-subunit involved in the differences of these current-decay kinetics. A series of hH1/hSkM1 chimeric sodium channels were constructed with the focus on the C-terminal region. Sodium currents of chimeric channels were recorded using the patch-clamp technique in whole-cell configuration. Chimeras where the C-terminal region had been exchanged between hH1 and hSkM1 revealed that this region contains the elements that cause differences in current decay kinetics between these sodium channel isoforms. Other biophysical characteristics (steady-state activation and inactivation and recovery from inactivation) were similar to the phenotype of the parent channel. This indicates that the C-terminus is exclusively implicated in the differences of current decay kinetics. Several other chimeras were constructed to identify a specific region of the C-terminus causing this difference. Our results showed that the first 100-amino-acid stretch of the C-terminal region contains constituents that could cause the differences in current decay between the heart and skeletal muscle sodium channels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Implication of the C-Terminal Region of the α-Subunit of Voltage-gated Sodium Channels in Fast Inactivation

Loading next page...
 
/lp/springer_journal/implication-of-the-c-terminal-region-of-the-subunit-of-voltage-gated-FAM2WeRJx3
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0058-5
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial