Implementing gate operations between uncoupled qubits in linear nearest neighbor arrays using a learning algorithm

Implementing gate operations between uncoupled qubits in linear nearest neighbor arrays using a... We propose a new scheme to implement gate operations in a one dimensional linear nearest neighbor array, by using dynamic learning algorithm. This is accomplished by training quantum system using a back propagation technique, to find the system parameters that implement gate operations directly. The key feature of our scheme is that, we can reduce the computational overhead of a quantum circuit by finding the parameters to implement the desired gate operation directly, without decomposing them into a sequence of elementary gate operations. We show how the training algorithm can be used as a tool for finding the parameters for implementing controlled-NOT (CNOT) and Toffoli gates between next-to-nearest neighbor qubits in an Ising-coupled linear nearest neighbor system. We then show how the scheme can be used to find parameters for realizing swap gates first, between two adjacent qubits and then, between two next-to-nearest-neighbor qubits, in each case without decomposing it into 3 CNOT gates. Finally, we show how the scheme can be extended to systems with non-diagonal interactions. To demonstrate, we train a quantum system with Heisenberg interactions to find the parameters to realize a swap operation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Implementing gate operations between uncoupled qubits in linear nearest neighbor arrays using a learning algorithm

Loading next page...
 
/lp/springer_journal/implementing-gate-operations-between-uncoupled-qubits-in-linear-3EvNCdDCyJ
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0526-8
Publisher site
See Article on Publisher Site

Abstract

We propose a new scheme to implement gate operations in a one dimensional linear nearest neighbor array, by using dynamic learning algorithm. This is accomplished by training quantum system using a back propagation technique, to find the system parameters that implement gate operations directly. The key feature of our scheme is that, we can reduce the computational overhead of a quantum circuit by finding the parameters to implement the desired gate operation directly, without decomposing them into a sequence of elementary gate operations. We show how the training algorithm can be used as a tool for finding the parameters for implementing controlled-NOT (CNOT) and Toffoli gates between next-to-nearest neighbor qubits in an Ising-coupled linear nearest neighbor system. We then show how the scheme can be used to find parameters for realizing swap gates first, between two adjacent qubits and then, between two next-to-nearest-neighbor qubits, in each case without decomposing it into 3 CNOT gates. Finally, we show how the scheme can be extended to systems with non-diagonal interactions. To demonstrate, we train a quantum system with Heisenberg interactions to find the parameters to realize a swap operation.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 26, 2013

References

  • Scalable, high-speed measurement-based quantum computer using trapped ions
    Stock, R; James, DFV
  • Nearest neighbor based synthesis of quantum Boolean circuits
    Chakrabarti, A; Sur-Kolay, S

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off