Imperialist Competitive Algorithm-Based Optimization of Neuro-Fuzzy System Parameters for Automatic Red-eye Removal

Imperialist Competitive Algorithm-Based Optimization of Neuro-Fuzzy System Parameters for... There are great deals of consumer photographs which are affected by red-eye artifacts and arise frequently when shooting with flash. In this paper, a new technique is proposed to solve this problem. The proposed technique starts by detecting the skin-like regions using an optimized pixel-based neuro-fuzzy processing; morphological operations are then used to discard the extra areas after crossing the threshold. Once the skin regions are detected, five new features including geometric and color metrics are proposed to enhance the classification accuracy of the red-eye artifacts. After that, another optimized neuro-fuzzy classifier is employed to classify the red-eye regions by using the presented features. Final result is achieved by a definite syntax between skin and red-eye regions, and then, a simple correction method is used to correct the detected regions. Finally, a comparison is performed among the proposed method toward the other popular procedures and also a simple neuro-fuzzy. Final results showed the high performance of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Fuzzy Systems Springer Journals

Imperialist Competitive Algorithm-Based Optimization of Neuro-Fuzzy System Parameters for Automatic Red-eye Removal

Loading next page...
 
/lp/springer_journal/imperialist-competitive-algorithm-based-optimization-of-neuro-fuzzy-xfXaDwxoAK
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Operations Research, Management Science
ISSN
1562-2479
eISSN
2199-3211
D.O.I.
10.1007/s40815-017-0305-2
Publisher site
See Article on Publisher Site

Abstract

There are great deals of consumer photographs which are affected by red-eye artifacts and arise frequently when shooting with flash. In this paper, a new technique is proposed to solve this problem. The proposed technique starts by detecting the skin-like regions using an optimized pixel-based neuro-fuzzy processing; morphological operations are then used to discard the extra areas after crossing the threshold. Once the skin regions are detected, five new features including geometric and color metrics are proposed to enhance the classification accuracy of the red-eye artifacts. After that, another optimized neuro-fuzzy classifier is employed to classify the red-eye regions by using the presented features. Final result is achieved by a definite syntax between skin and red-eye regions, and then, a simple correction method is used to correct the detected regions. Finally, a comparison is performed among the proposed method toward the other popular procedures and also a simple neuro-fuzzy. Final results showed the high performance of the proposed method.

Journal

International Journal of Fuzzy SystemsSpringer Journals

Published: Mar 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off