Impedance spectroscopy study and phase transition in phospho-vanadium mixed oxide LiZnV0.5P0.5O4

Impedance spectroscopy study and phase transition in phospho-vanadium mixed oxide LiZnV0.5P0.5O4 An X-ray crystallographic study has allowed us to identify a powder of the type LiZnV0.5P0.5O4, which contains 50% of vanadium and 50% of phosphore, inside the binary system LiZnVO4–LiZnPO4. The structure is isotypic with the phenacite like LiZnP04. X-ray diffraction patterns are indexed according to the lattice parameters of the rhombohedral system and the R3 space group. IR spectra show the presence of VO4 and PO4 groups in the network of this material. The experimental results indicate that $$\sigma_{\text{AC}}$$ σ AC ( $$\omega$$ ω ) is proportional to $$\left( {\omega^{n} } \right)$$ ω n . The activation energy found from the Arrhenius plot confirms that the conduction processing of the material is not due to simple hopping mechanism. The temperature dependence of frequency exponent n was investigated to understanding the conduction mechanism in LiZnV0.5P0.5O4. The non-overlapping small Polaron tunneling (NSPT) model can explain the temperature dependence of the frequency exponent. A phase transition at T = 623 K has been evidenced by Differential scanning calorimetry (DSC) and subsequently confirmed by the analysis of dielectric and electric properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Impedance spectroscopy study and phase transition in phospho-vanadium mixed oxide LiZnV0.5P0.5O4

Loading next page...
 
/lp/springer_journal/impedance-spectroscopy-study-and-phase-transition-in-phospho-vanadium-OG5FUXRuwZ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-017-1166-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial