Impedance Spectroscopic Investigation of the Bilayer Lipid Membranes Formed from the Phosphatidylserine–Ceramide Mixture

Impedance Spectroscopic Investigation of the Bilayer Lipid Membranes Formed from the... Electrochemical impedance spectroscopy was used for the study of two-component lipid membranes. Phosphatidylserine and ceramide were to be investigated because they play an important biochemical role in cell membranes. The research on biolipid interaction was focused on a quantitative description of processes that take part in a bilayer. Assumed models of interaction between amphiphilic molecules and the equilibria that take place there were described by mathematical equations for the studied system. The possibility of complex formation for a two-component system forming bilayers was assumed, which could explain the deviation from the additivity rule. The molecular area and the equilibrium constant of the complex were determined. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Impedance Spectroscopic Investigation of the Bilayer Lipid Membranes Formed from the Phosphatidylserine–Ceramide Mixture

Loading next page...
 
/lp/springer_journal/impedance-spectroscopic-investigation-of-the-bilayer-lipid-membranes-jI0XuH3ChP
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9144-2
Publisher site
See Article on Publisher Site

Abstract

Electrochemical impedance spectroscopy was used for the study of two-component lipid membranes. Phosphatidylserine and ceramide were to be investigated because they play an important biochemical role in cell membranes. The research on biolipid interaction was focused on a quantitative description of processes that take part in a bilayer. Assumed models of interaction between amphiphilic molecules and the equilibria that take place there were described by mathematical equations for the studied system. The possibility of complex formation for a two-component system forming bilayers was assumed, which could explain the deviation from the additivity rule. The molecular area and the equilibrium constant of the complex were determined.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 3, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off