Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Impedance spectra of polymer electrolytes

Impedance spectra of polymer electrolytes The authors present a phenomenological view on dielectric relaxation in polymer electrolytes. Polymer electrolytes are seen as molecular mixtures of an organic polymer and an inorganic salt. The following is based on systems with high molar mass poly(ethylene oxide) (PEO) and epoxidized natural rubber with 25 mol% of epoxide content (ENR-25) filled with lithium perchlorate (LiClO4). Dielectric properties of these systems have been studied as a function of salt content at room temperature. Additionally, properties of neat low molar mass PEO were studied as function of temperature. Relaxation-coined dielectric behavior rules the system with PEO in the frequency that ranged up to 106 Hz. Imaginary parts of impedance, tangent loss, and electric modulus spectra show distribution of relaxation times. Comparison of tangent loss (tan δ) spectra and imaginary part of electric modulus (M″) spectra reveals that localized motion dominates long-range motion of dipoles in the low-frequency range. However, discrepancy between them decreases with growing salt content. Scaling of tan δ spectra demonstrates that distribution of relaxation times does not depend on salt content in the range of low frequencies. The ENR-25 system exhibits solely relaxation like a macroscopic dipole. In conclusion, the system with PEO is characterized by individual relaxation of well-interacting dipoles, whereas the system based on ENR-25 is coined by immobilized dipoles that lead in the state of high-salt content to the relaxation behavior of a macroscopic dipole. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Impedance spectra of polymer electrolytes

Ionics , Volume 23 (9) – Jun 21, 2017

Loading next page...
 
/lp/springer_journal/impedance-spectra-of-polymer-electrolytes-T0DKTzAY04

References (24)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-017-2174-y
Publisher site
See Article on Publisher Site

Abstract

The authors present a phenomenological view on dielectric relaxation in polymer electrolytes. Polymer electrolytes are seen as molecular mixtures of an organic polymer and an inorganic salt. The following is based on systems with high molar mass poly(ethylene oxide) (PEO) and epoxidized natural rubber with 25 mol% of epoxide content (ENR-25) filled with lithium perchlorate (LiClO4). Dielectric properties of these systems have been studied as a function of salt content at room temperature. Additionally, properties of neat low molar mass PEO were studied as function of temperature. Relaxation-coined dielectric behavior rules the system with PEO in the frequency that ranged up to 106 Hz. Imaginary parts of impedance, tangent loss, and electric modulus spectra show distribution of relaxation times. Comparison of tangent loss (tan δ) spectra and imaginary part of electric modulus (M″) spectra reveals that localized motion dominates long-range motion of dipoles in the low-frequency range. However, discrepancy between them decreases with growing salt content. Scaling of tan δ spectra demonstrates that distribution of relaxation times does not depend on salt content in the range of low frequencies. The ENR-25 system exhibits solely relaxation like a macroscopic dipole. In conclusion, the system with PEO is characterized by individual relaxation of well-interacting dipoles, whereas the system based on ENR-25 is coined by immobilized dipoles that lead in the state of high-salt content to the relaxation behavior of a macroscopic dipole.

Journal

IonicsSpringer Journals

Published: Jun 21, 2017

There are no references for this article.