Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.5−x Cu0.05O4 NTC thermistors

Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.5−x Cu0.05O4 NTC... Polycrystalline Mn1.75Ni0.7Co0.5−x Cu0.05Ba x O4 (x = 0, 0.05 and 0.1) based negative temperature coefficient (NTC) thermistors were synthesized using conventional solid state reaction method. X-ray diffraction (XRD) analysis confirmed the presence of single phase cubic spinel structure for all the compositions and successful substitution of Ba. Scanning electron microscopy (SEM) revealed a dense microstructure along with slight increase in grain size due to Ba doping. Impedance spectroscopy (IS) studies showed that the increase in temperature caused both grain and grain boundary resistance to decrease indicating NTC behavior of the samples. The grain boundary resistance was several magnitudes greater than the resistance of grains which showed that the NTC characteristic of doped samples was mainly dependent on grain boundaries. The time constant for both grain and grain boundary decreased with temperature indicating a hopping conduction mechanism. These results can lead to design the optimum microstructure for various practical applications of NTC thermistors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.5−x Cu0.05O4 NTC thermistors

Loading next page...
 
/lp/springer_journal/impedance-analysis-and-conduction-mechanism-of-ba-doped-mn1-75ni0-7co0-wzs2Kf90FU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-017-1192-y
Publisher site
See Article on Publisher Site

Abstract

Polycrystalline Mn1.75Ni0.7Co0.5−x Cu0.05Ba x O4 (x = 0, 0.05 and 0.1) based negative temperature coefficient (NTC) thermistors were synthesized using conventional solid state reaction method. X-ray diffraction (XRD) analysis confirmed the presence of single phase cubic spinel structure for all the compositions and successful substitution of Ba. Scanning electron microscopy (SEM) revealed a dense microstructure along with slight increase in grain size due to Ba doping. Impedance spectroscopy (IS) studies showed that the increase in temperature caused both grain and grain boundary resistance to decrease indicating NTC behavior of the samples. The grain boundary resistance was several magnitudes greater than the resistance of grains which showed that the NTC characteristic of doped samples was mainly dependent on grain boundaries. The time constant for both grain and grain boundary decreased with temperature indicating a hopping conduction mechanism. These results can lead to design the optimum microstructure for various practical applications of NTC thermistors.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Aug 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off