Impacts of warming on root biomass allocation in alpine steppe on the north Tibetan Plateau

Impacts of warming on root biomass allocation in alpine steppe on the north Tibetan Plateau Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of root architecture and of root biomass allocation between coarse and fine roots have been scarcely reported in grassland ecosystems. We conducted an open-top-chamber warming experiment to investigate the effect of potential warming on root biomass and root allocation in alpine steppe on the north Tibetan Plateau. The results showed that Stipa purpurea had significantly higher total root length, root surface area and tips than Carex moocroftii. However, there were no differences in total root volume, mean diameter and forks for the two species. Warming significantly increased total root biomass (27.60%), root biomass at 0–10 cm depth (27.84%) and coarse root biomass (diameter > 0.20 mm, 57.68%) in the growing season (August). However, warming had no significant influence on root biomass in the non-growing season (April). Root biomass showed clear seasonal variations: total root biomass, root biomass at 0–10 cm depth and coarse root biomass significantly increased in the growing season. The increase in total root biomass was due to the enhancement of root biomass at 0–10 cm depth, to which the increase of coarse root biomass made a great contribution. This research is of significance for understanding biomass allocation, carbon cycling and biological adaptability in alpine grassland ecosystems under future climate change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mountain Science Springer Journals

Impacts of warming on root biomass allocation in alpine steppe on the north Tibetan Plateau

Loading next page...
 
/lp/springer_journal/impacts-of-warming-on-root-biomass-allocation-in-alpine-steppe-on-the-kMXuxtVC9S
Publisher
Science Press
Copyright
Copyright © 2017 by Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany
Subject
Earth Sciences; Earth Sciences, general; Geography, general; Environment, general; Ecology
ISSN
1672-6316
eISSN
1993-0321
D.O.I.
10.1007/s11629-016-3966-7
Publisher site
See Article on Publisher Site

Abstract

Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of root architecture and of root biomass allocation between coarse and fine roots have been scarcely reported in grassland ecosystems. We conducted an open-top-chamber warming experiment to investigate the effect of potential warming on root biomass and root allocation in alpine steppe on the north Tibetan Plateau. The results showed that Stipa purpurea had significantly higher total root length, root surface area and tips than Carex moocroftii. However, there were no differences in total root volume, mean diameter and forks for the two species. Warming significantly increased total root biomass (27.60%), root biomass at 0–10 cm depth (27.84%) and coarse root biomass (diameter > 0.20 mm, 57.68%) in the growing season (August). However, warming had no significant influence on root biomass in the non-growing season (April). Root biomass showed clear seasonal variations: total root biomass, root biomass at 0–10 cm depth and coarse root biomass significantly increased in the growing season. The increase in total root biomass was due to the enhancement of root biomass at 0–10 cm depth, to which the increase of coarse root biomass made a great contribution. This research is of significance for understanding biomass allocation, carbon cycling and biological adaptability in alpine grassland ecosystems under future climate change.

Journal

Journal of Mountain ScienceSpringer Journals

Published: Jun 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off