Impacts of varying durations of passive oxygen exposure on freshwater denitrifier community structure and function

Impacts of varying durations of passive oxygen exposure on freshwater denitrifier community... Fertilizer use has dramatically increased the availability of nitrate (NO3 −) in aquatic systems. Microbe-mediated denitrification is one of the predominant means of NO3 − removal from freshwaters, yet oxygenation (O2)-induced disruptions—e.g., extreme precipitation events—can occur, resulting in a disproportional increase in nitrous oxide (N2O) production and efflux as facultative anaerobic bacterial populations use of O2 as a terminal electron acceptor increases. We examined the effects of 12- and 24-h passive O2 exposure on previously anaerobic bacterial communities focusing on denitrification enzyme activity (DEA), N2O production, and bacterial community 16S rRNA and nitrous oxide reductase gene (nosZ) profiles after 12, 24, and 48 h of anaerobic recovery. Treatments experiencing 24-h O2 exposure had significantly higher DEA 12 h into anaerobic recovery than treatments undergoing 12-h O2 exposure. Initial N2O emissions were significantly lower in the 24-h O2 exposure treatments although by 24 h a dramatic spike (tenfold relative to the 12-h O2 exposure treatments) in N2O concentrations was observed. However, within 6 h (30-h anaerobic recovery) these differences were gone. Community nosZ profiles experiencing 24-h O2 exposure exhibited reduced diversity after 24-h recovery, which corresponded with an increase in N2O emissions. However, after 48 h of anaerobic recovery, nosZ diversity had recovered. These observations highlight the effects of short-term aerobic disruption on denitrification, as well as the effects on the denitrifier community profile. Together, these data suggest that recovery to ambient N cycling is exacerbated by disturbance length due to increased lag time and subsequent loss of denitrifier community diversity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Ecology Springer Journals

Impacts of varying durations of passive oxygen exposure on freshwater denitrifier community structure and function

Loading next page...
 
/lp/springer_journal/impacts-of-varying-durations-of-passive-oxygen-exposure-on-freshwater-1EgvYvSMIs
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Life Sciences; Freshwater & Marine Ecology; Ecosystems
ISSN
1386-2588
eISSN
1573-5125
D.O.I.
10.1007/s10452-017-9643-2
Publisher site
See Article on Publisher Site

Abstract

Fertilizer use has dramatically increased the availability of nitrate (NO3 −) in aquatic systems. Microbe-mediated denitrification is one of the predominant means of NO3 − removal from freshwaters, yet oxygenation (O2)-induced disruptions—e.g., extreme precipitation events—can occur, resulting in a disproportional increase in nitrous oxide (N2O) production and efflux as facultative anaerobic bacterial populations use of O2 as a terminal electron acceptor increases. We examined the effects of 12- and 24-h passive O2 exposure on previously anaerobic bacterial communities focusing on denitrification enzyme activity (DEA), N2O production, and bacterial community 16S rRNA and nitrous oxide reductase gene (nosZ) profiles after 12, 24, and 48 h of anaerobic recovery. Treatments experiencing 24-h O2 exposure had significantly higher DEA 12 h into anaerobic recovery than treatments undergoing 12-h O2 exposure. Initial N2O emissions were significantly lower in the 24-h O2 exposure treatments although by 24 h a dramatic spike (tenfold relative to the 12-h O2 exposure treatments) in N2O concentrations was observed. However, within 6 h (30-h anaerobic recovery) these differences were gone. Community nosZ profiles experiencing 24-h O2 exposure exhibited reduced diversity after 24-h recovery, which corresponded with an increase in N2O emissions. However, after 48 h of anaerobic recovery, nosZ diversity had recovered. These observations highlight the effects of short-term aerobic disruption on denitrification, as well as the effects on the denitrifier community profile. Together, these data suggest that recovery to ambient N cycling is exacerbated by disturbance length due to increased lag time and subsequent loss of denitrifier community diversity.

Journal

Aquatic EcologySpringer Journals

Published: Oct 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off