Impacts of integrated nutrient management on methane emission, global warming potential and carbon storage capacity in rice grown in a northeast India soil

Impacts of integrated nutrient management on methane emission, global warming potential and... Rice soil is a source of emission of two major greenhouse gases (methane (CH4) and nitrous oxide (N2O)) and a sink of carbon dioxide (CO2). The effect of inorganic fertilizers in combination with various organics (cow dung, green manure (Sesbania aculeata) Azolla compost, rice husk) on CH4 emission, global warming potential, and soil carbon storage along with crop productivity were studied at university farm under field conditions. The experiment was conducted in a randomized block design for 2 years in a monsoon rice (cv. Ranjit) ecosystem (June–November, 2014 and 2015). Combined application of inorganic (NPK) with Sesbania aculeata resulted in high global warming potential (GWP) of 887.4 kg CO2 ha−1 and low GWP of 540.6 kg CO2 ha−1 was recorded from inorganic fertilizer applied field. Irrespective of the type of organic amendments, flag leaf photosynthesis of the rice crop increased over NPK application (control). There was an increase in CH4 emission from the organic amended fields compared to NPK alone. The combined application of NPK and Azolla compost was effective in the buildup of soil carbon (16.93 g kg−1) and capacity of soil carbon storage (28.1 Mg C ha−1) with high carbon efficiency ratio (16.9). Azolla compost application along with NPK recorded 15.66% higher CH4 emission with 27.43% yield increment over control. Azolla compost application significantly enhanced carbon storage of soil and improved the yielding ability of grain (6.55 Mg ha−1) over other treatments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Impacts of integrated nutrient management on methane emission, global warming potential and carbon storage capacity in rice grown in a northeast India soil

Loading next page...
 
/lp/springer_journal/impacts-of-integrated-nutrient-management-on-methane-emission-global-ki9q8nGCEh
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0879-0
Publisher site
See Article on Publisher Site

Abstract

Rice soil is a source of emission of two major greenhouse gases (methane (CH4) and nitrous oxide (N2O)) and a sink of carbon dioxide (CO2). The effect of inorganic fertilizers in combination with various organics (cow dung, green manure (Sesbania aculeata) Azolla compost, rice husk) on CH4 emission, global warming potential, and soil carbon storage along with crop productivity were studied at university farm under field conditions. The experiment was conducted in a randomized block design for 2 years in a monsoon rice (cv. Ranjit) ecosystem (June–November, 2014 and 2015). Combined application of inorganic (NPK) with Sesbania aculeata resulted in high global warming potential (GWP) of 887.4 kg CO2 ha−1 and low GWP of 540.6 kg CO2 ha−1 was recorded from inorganic fertilizer applied field. Irrespective of the type of organic amendments, flag leaf photosynthesis of the rice crop increased over NPK application (control). There was an increase in CH4 emission from the organic amended fields compared to NPK alone. The combined application of NPK and Azolla compost was effective in the buildup of soil carbon (16.93 g kg−1) and capacity of soil carbon storage (28.1 Mg C ha−1) with high carbon efficiency ratio (16.9). Azolla compost application along with NPK recorded 15.66% higher CH4 emission with 27.43% yield increment over control. Azolla compost application significantly enhanced carbon storage of soil and improved the yielding ability of grain (6.55 Mg ha−1) over other treatments.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off