Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings

Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings The impact of weak permanent magnetic field (PMF) with magnetic flux density of 185–650 μT on activities of antioxidant enzymes in 5-day-old radish (Raphanus sativus L. var. radicula D.C.) seedlings, cv, Rosovo-krasnyi s belym konchikom was demonstrated. In the range of 185–325 μT PMF suppressed superoxide dismutase (SOD) activity in seedling grown in darkness and catalase (CAT) grown in both darkness and light. At the same values of magnetic flux density, all fractions of guaiacol peroxidase were activated and MDA accumulation was enhanced. At the higher values of magnetic flux density, SOD was activated in seedlings grown in darkness and CAT was activated in seedlings grown in both darkness and light. Other indices decreased or remained unchanged. It was concluded that PMF action depends on its intensity: at its low values, antioxidant enzymes are inhibited and at high values — activated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings

Loading next page...
 
/lp/springer_journal/impact-of-weak-permanent-magnetic-field-on-antioxidant-enzyme-9f7LOYlTeH
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713010068
Publisher site
See Article on Publisher Site

Abstract

The impact of weak permanent magnetic field (PMF) with magnetic flux density of 185–650 μT on activities of antioxidant enzymes in 5-day-old radish (Raphanus sativus L. var. radicula D.C.) seedlings, cv, Rosovo-krasnyi s belym konchikom was demonstrated. In the range of 185–325 μT PMF suppressed superoxide dismutase (SOD) activity in seedling grown in darkness and catalase (CAT) grown in both darkness and light. At the same values of magnetic flux density, all fractions of guaiacol peroxidase were activated and MDA accumulation was enhanced. At the higher values of magnetic flux density, SOD was activated in seedlings grown in darkness and CAT was activated in seedlings grown in both darkness and light. Other indices decreased or remained unchanged. It was concluded that PMF action depends on its intensity: at its low values, antioxidant enzymes are inhibited and at high values — activated.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off