Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues

Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged... We experimented a novel reporter system to analyze intrachromosomal recombination between homeologous sequences in Arabidopsis germ cell lineages. The recombination substrates used are the BAR and PAT genes which diverge by about 13% at the nucleotide level and confer resistance to the herbicide glufosinate. DNA double-strand breaks (DSBs) were generated by the I-Sce1 endonuclease to induce recombination. Loss of AtMSH2 induces a 3-fold increase of the frequency of recombination events indicating that AtMSH2 is involved in the anti-recombination activity that prevents exchange between highly diverged sequences in Arabidopsis. Molecular analysis of recombined alleles indicates that in wild type plants the single strand annealing (SSA) pathway can process more efficiently homologous 3′ ends than 3′ ends generated by resection of non-homologous overhangs. The loss of AtMSH2 disturbs this process, leading to a modification of the distribution of the BAR/PAT junctions and therefore showing that the MSH2 function is also involved in determining the structure of the recombined alleles. In addition, conversion tracts were observed in some alleles. They are shorter in MSH2 deficient plants than in wild-type, suggesting that a short-patch mismatch repair, not controlled by MSH2, could exist in Arabidopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues

Loading next page...
 
/lp/springer_journal/impact-of-the-loss-of-atmsh2-on-double-strand-break-induced-Vu0c4N9LXN
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9128-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial