Impact of Pluronic® F68 on hollow fiber filter-based perfusion culture performance

Impact of Pluronic® F68 on hollow fiber filter-based perfusion culture performance High cell density is an important factor in achieving high bioreactor productivity. To meet the oxygen demand with density at >100 × 106 cells/mL, a frit sparger is often used. In this study, the impact of Pluronic® F68 on a perfusion process using a frit sparger was studied. The perfusion process was developed using an alternating tangential flow device with a 0.2 µm PES hollow fiber filter. Pluronic® F68 at 2 g/L was sufficient in preventing cell damage at gas flow rate of ~0.20 vvm from a drilled hole sparger (0.5 mm) but inadequate at ~0.025 vvm from a frit sparger (20 µm). Increase of Pluronic® F68 concentration to 5 g/L prevented cell death at up to ~0.10 vvm from the frit sparger and was able to maintain high cell density at high viability in the range of 60–80 × 106 cells/mL. Such positive effect was demonstrated in both 3- and 200-L bioreactors. Supplementing additional Pluronic® F68 was also effective in restoring cell growth/viability from low viability cultures. Increased Pluronic® F68 concentration had no adverse impact on target antibody, HCP, and Pluronic® F68 transmissions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioprocess and Biosystems Engineering Springer Journals

Impact of Pluronic® F68 on hollow fiber filter-based perfusion culture performance

Loading next page...
 
/lp/springer_journal/impact-of-pluronic-f68-on-hollow-fiber-filter-based-perfusion-culture-Dcs1hTFTUd
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Biotechnology; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering; Food Science
ISSN
1615-7591
eISSN
1615-7605
D.O.I.
10.1007/s00449-017-1790-2
Publisher site
See Article on Publisher Site

Abstract

High cell density is an important factor in achieving high bioreactor productivity. To meet the oxygen demand with density at >100 × 106 cells/mL, a frit sparger is often used. In this study, the impact of Pluronic® F68 on a perfusion process using a frit sparger was studied. The perfusion process was developed using an alternating tangential flow device with a 0.2 µm PES hollow fiber filter. Pluronic® F68 at 2 g/L was sufficient in preventing cell damage at gas flow rate of ~0.20 vvm from a drilled hole sparger (0.5 mm) but inadequate at ~0.025 vvm from a frit sparger (20 µm). Increase of Pluronic® F68 concentration to 5 g/L prevented cell death at up to ~0.10 vvm from the frit sparger and was able to maintain high cell density at high viability in the range of 60–80 × 106 cells/mL. Such positive effect was demonstrated in both 3- and 200-L bioreactors. Supplementing additional Pluronic® F68 was also effective in restoring cell growth/viability from low viability cultures. Increased Pluronic® F68 concentration had no adverse impact on target antibody, HCP, and Pluronic® F68 transmissions.

Journal

Bioprocess and Biosystems EngineeringSpringer Journals

Published: Jun 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off