Impact of Mismatch Angle on Electronic Transport Across Grain Boundaries and Interfaces in 2D Materials

Impact of Mismatch Angle on Electronic Transport Across Grain Boundaries and Interfaces in 2D... We study the impact of grain boundaries (GB) and misorientation angles between grains on electronic transport in 2-dimensional materials. Here we have developed a numerical model based on the first-principles electronic bandstructure calculations in conjunction with a method which computes electron transmission coefficients from simultaneous conservation of energy and momentum at the interface to essentially evaluate GB/interface resistance in a Landauer formalism. We find that the resistance across graphene GBs vary over a wide range depending on misorientation angles and type of GBs, starting from 53 Ω μm for low-mismatch angles in twin (symmetric) GBs to about 1020 Ω μm for 21° mismatch in tilt (asymmetric) GBs. On the other hand, misorientation angles have weak influence on the resistance across MoS2 GBs, ranging from about 130 Ω μm for low mismatch angles to about 6000 Ω μm for 21°. The interface resistance across graphene-MoS2 heterojunctions also exhibits a strong dependence on misorientation angles with resistance values ranging from about 100 Ω μm for low-mismatch angles in Class-I (symmetric) interfaces to 1015 Ω μm for 14° mismatch in Class-II (asymmetric) interfaces. Overall, symmetric homo/heterojunctions exhibit a weak dependence on misorientation angles, while in MoS2 both symmetric and asymmetric GBs show a gradual dependence on mismatch angles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Impact of Mismatch Angle on Electronic Transport Across Grain Boundaries and Interfaces in 2D Materials

Loading next page...
 
/lp/springer_journal/impact-of-mismatch-angle-on-electronic-transport-across-grain-ZdJwzYQokQ
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16744-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial