Impact of dexamethasone concentration on cartilage tissue formation from human synovial derived stem cells in vitro

Impact of dexamethasone concentration on cartilage tissue formation from human synovial derived... Human synovial mesenchymal stem cells (hSMSCs) are a promising cell source for cartilage regeneration because of their superior chondrogenic potential in vitro. This study aimed to further optimize the conditions for inducing chondrogenesis of hSMSCs, focusing on the dose of dexamethasone in combination with transforming growth factor-β3 (TGFβ3) and/or bone morphogenetic protein-2 (BMP2). When hSMSCs-derived aggregates were cultured with TGFβ3, dexamethasone up to 10 nM promoted chondrogenesis, but attenuated it with heterogeneous tissue formation when used at concentrations over than 100 nM. On the other hands, BMP2-induced chondrogenesis was remarkably disturbed in the presence of more than 10 nM dexamethasone along with unexpected adipogenic differentiation. In the presence of both TGFβ3 and BMP2, dexamethasone dose dependently promoted cartilaginous tissue formation as judged by tissue volume, proteoglycan content, and type 2 collagen expression, whereas few adipocytes were detected in the formed tissue when cultures were supplemented with over 100 nM dexamethasone. Even in chondrogenic conditions, dexamethasone thus affected hSMSCs differentiation not only toward chondrocytes, but also towards adipocytes dependent on the dose and combined growth factor. These findings have important implications regarding the use of glucocorticoids in in vitro tissue engineering for cartilage regeneration using hSMSCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cytotechnology Springer Journals

Impact of dexamethasone concentration on cartilage tissue formation from human synovial derived stem cells in vitro

Loading next page...
 
/lp/springer_journal/impact-of-dexamethasone-concentration-on-cartilage-tissue-formation-sC0dBsyeZS
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Chemistry; Biotechnology; Biomedicine, general; Biochemistry, general
ISSN
0920-9069
eISSN
1573-0778
D.O.I.
10.1007/s10616-018-0191-y
Publisher site
See Article on Publisher Site

Abstract

Human synovial mesenchymal stem cells (hSMSCs) are a promising cell source for cartilage regeneration because of their superior chondrogenic potential in vitro. This study aimed to further optimize the conditions for inducing chondrogenesis of hSMSCs, focusing on the dose of dexamethasone in combination with transforming growth factor-β3 (TGFβ3) and/or bone morphogenetic protein-2 (BMP2). When hSMSCs-derived aggregates were cultured with TGFβ3, dexamethasone up to 10 nM promoted chondrogenesis, but attenuated it with heterogeneous tissue formation when used at concentrations over than 100 nM. On the other hands, BMP2-induced chondrogenesis was remarkably disturbed in the presence of more than 10 nM dexamethasone along with unexpected adipogenic differentiation. In the presence of both TGFβ3 and BMP2, dexamethasone dose dependently promoted cartilaginous tissue formation as judged by tissue volume, proteoglycan content, and type 2 collagen expression, whereas few adipocytes were detected in the formed tissue when cultures were supplemented with over 100 nM dexamethasone. Even in chondrogenic conditions, dexamethasone thus affected hSMSCs differentiation not only toward chondrocytes, but also towards adipocytes dependent on the dose and combined growth factor. These findings have important implications regarding the use of glucocorticoids in in vitro tissue engineering for cartilage regeneration using hSMSCs.

Journal

CytotechnologySpringer Journals

Published: Jan 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off