Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein

Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea... Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. Acute PEDV outbreaks have continually emerged in most swine-producing Asian countries and, recently, in the United States, causing significant economic losses in the pig industry. The spike (S) protein of PEDV is a type 1 transmembrane envelope glycoprotein and consists of the S1 and S2 domains, which are responsible for virus binding and fusion, respectively. Since the S1 domain is involved in a specific high-affinity interaction with the cellular receptor and induction of neutralizing antibody in the natural host, it is a primary target for the development of effective vaccines against PEDV. In this study, a codon-optimized PEDV S1 gene containing amino acid residues 25–738 was synthesized based on a multiple alignment of the S amino acid sequences of PEDV field isolates and used to establish a stable porcine cell line constitutively expressing the PEDV S1 protein. The purified recombinant S1 protein was found to mediate highly potent antibody responses in immunized rabbits. The antibodies strongly recognized the recombinant S1 protein from cell lysates and supernatants of S1-expressing cells, whereas they bound weakly to the authentic S protein of PEDV vaccine strain SM98-1. Furthermore, a serum neutralization test revealed that the rabbit antisera completely inhibit infection of the PEDV vaccine strain at a serum dilution of 1:16. We then tested the ability of vaccination with the recombinant S1 protein to protect piglets against PEDV. Late-term pregnant sows were inoculated intramuscularly with the purified S1 protein, and the outcome was investigated in passively immunized suckling piglets after a virulent PEDV challenge. The results showed that vaccination with S1 protein efficiently protected neonatal piglets against PEDV. Our data suggest that the recombinant S1 protein shows potential as an effective and safe subunit vaccine for PED prevention. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein

Loading next page...
 
/lp/springer_journal/immunogenicity-and-protective-efficacy-of-recombinant-s1-domain-of-the-3kvPkBCawh
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-014-2163-7
Publisher site
See Article on Publisher Site

Abstract

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. Acute PEDV outbreaks have continually emerged in most swine-producing Asian countries and, recently, in the United States, causing significant economic losses in the pig industry. The spike (S) protein of PEDV is a type 1 transmembrane envelope glycoprotein and consists of the S1 and S2 domains, which are responsible for virus binding and fusion, respectively. Since the S1 domain is involved in a specific high-affinity interaction with the cellular receptor and induction of neutralizing antibody in the natural host, it is a primary target for the development of effective vaccines against PEDV. In this study, a codon-optimized PEDV S1 gene containing amino acid residues 25–738 was synthesized based on a multiple alignment of the S amino acid sequences of PEDV field isolates and used to establish a stable porcine cell line constitutively expressing the PEDV S1 protein. The purified recombinant S1 protein was found to mediate highly potent antibody responses in immunized rabbits. The antibodies strongly recognized the recombinant S1 protein from cell lysates and supernatants of S1-expressing cells, whereas they bound weakly to the authentic S protein of PEDV vaccine strain SM98-1. Furthermore, a serum neutralization test revealed that the rabbit antisera completely inhibit infection of the PEDV vaccine strain at a serum dilution of 1:16. We then tested the ability of vaccination with the recombinant S1 protein to protect piglets against PEDV. Late-term pregnant sows were inoculated intramuscularly with the purified S1 protein, and the outcome was investigated in passively immunized suckling piglets after a virulent PEDV challenge. The results showed that vaccination with S1 protein efficiently protected neonatal piglets against PEDV. Our data suggest that the recombinant S1 protein shows potential as an effective and safe subunit vaccine for PED prevention.

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 2014

References

  • Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China
    Chen, JF; Sun, DB; Wang, CB; Shi, HY; Cui, XC; Liu, SW; Qiu, HJ; Feng, L
  • Multiplex real-time RT-PCR for the simultaneous detection and quantification of transmissible gastroenteritis virus and porcine epidemic diarrhea virus
    Kim, SH; Kim, IJ; Pyo, HM; Tark, DS; Song, JY; Hyun, BH
  • Isolation of porcine epidemic diarrhea virus (PEDV) in Korea
    Kweon, CH; Kwon, BJ; Jung, TS; Kee, YJ; Hur, DH; Hwang, EK; Rhee, JC; An, SH
  • Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea
    Lee, DK; Park, CK; Kim, SH; Lee, C
  • Deadly pig virus slips through US borders
    Mole, B
  • Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection
    Nam, E; Lee, C

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off