Immobilization of photosystem I or II complexes on electrodes for preparation of photoenergy-conversion devices

Immobilization of photosystem I or II complexes on electrodes for preparation of... Photosystems, PSI and PSII isolated from Thermosynechococcus elongatus were successfully immobilized on a TiO2 nanostructured film for use in dye-sensitized biosolar cells (DSBCs). The photosystem complexes were also immobilized on an ITO electrode modified with 3-aminopropyltriethoxysilane by utilizing the interactions between the electrode and the surface of the PSI or PSII polypeptide. Illumination of the PSI and PSII complexes immobilized on the ITO electrode resulted in action spectra in the presence of methyl viologen, which corresponded to the absorption spectra of the complexes. Compared with the ITO electrode, PSI or PSII complexes assembled on the TiO2 electrode had much higher energy-conversion efficiency in the presence of an iodide/triiodide redox system of an ionic-liquid-based electrolyte. This could have interesting applications in the development of DSBCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Immobilization of photosystem I or II complexes on electrodes for preparation of photoenergy-conversion devices

Loading next page...
 
/lp/springer_journal/immobilization-of-photosystem-i-or-ii-complexes-on-electrodes-for-a7qYvpQWcD
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1833-0
Publisher site
See Article on Publisher Site

Abstract

Photosystems, PSI and PSII isolated from Thermosynechococcus elongatus were successfully immobilized on a TiO2 nanostructured film for use in dye-sensitized biosolar cells (DSBCs). The photosystem complexes were also immobilized on an ITO electrode modified with 3-aminopropyltriethoxysilane by utilizing the interactions between the electrode and the surface of the PSI or PSII polypeptide. Illumination of the PSI and PSII complexes immobilized on the ITO electrode resulted in action spectra in the presence of methyl viologen, which corresponded to the absorption spectra of the complexes. Compared with the ITO electrode, PSI or PSII complexes assembled on the TiO2 electrode had much higher energy-conversion efficiency in the presence of an iodide/triiodide redox system of an ionic-liquid-based electrolyte. This could have interesting applications in the development of DSBCs.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 17, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off