Immersive visualisation of 3-dimensional spiking neural networks

Immersive visualisation of 3-dimensional spiking neural networks Recent development in artificial neural networks has led to an increase in performance, but also in complexity and size. This poses a significant challenge for the exploration and analysis of the spatial structure and temporal behaviour of such networks. Several projects for the 3D visualisation of neural networks exist, but they focus largely on the exploration of the spatial structure alone, and are using standard 2D screens as output and mouse and keyboard as input devices. In this article, we present NeuVis, a framework for an intuitive and immersive 3D visualisation of spiking neural networks in virtual reality, allowing for a larger variety of input and output devices. We apply NeuVis to NeuCube, a 3-dimensional spiking neural network learning framework, significantly improving the user’s abilities to explore, analyse, and also debug the network. Finally, we discuss further venues of development and alternative render methods that are currently under development and will increase the visual accuracy and realism of the visualisation, as well as further extending its analysis and exploration capabilities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolving Systems Springer Journals

Immersive visualisation of 3-dimensional spiking neural networks

Loading next page...
 
/lp/springer_journal/immersive-visualisation-of-3-dimensional-spiking-neural-networks-DO3Zzqv1b7
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Complexity; Artificial Intelligence (incl. Robotics); Complex Systems
ISSN
1868-6478
eISSN
1868-6486
D.O.I.
10.1007/s12530-016-9170-8
Publisher site
See Article on Publisher Site

Abstract

Recent development in artificial neural networks has led to an increase in performance, but also in complexity and size. This poses a significant challenge for the exploration and analysis of the spatial structure and temporal behaviour of such networks. Several projects for the 3D visualisation of neural networks exist, but they focus largely on the exploration of the spatial structure alone, and are using standard 2D screens as output and mouse and keyboard as input devices. In this article, we present NeuVis, a framework for an intuitive and immersive 3D visualisation of spiking neural networks in virtual reality, allowing for a larger variety of input and output devices. We apply NeuVis to NeuCube, a 3-dimensional spiking neural network learning framework, significantly improving the user’s abilities to explore, analyse, and also debug the network. Finally, we discuss further venues of development and alternative render methods that are currently under development and will increase the visual accuracy and realism of the visualisation, as well as further extending its analysis and exploration capabilities.

Journal

Evolving SystemsSpringer Journals

Published: Nov 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off