Immersive visualisation of 3-dimensional spiking neural networks

Immersive visualisation of 3-dimensional spiking neural networks Recent development in artificial neural networks has led to an increase in performance, but also in complexity and size. This poses a significant challenge for the exploration and analysis of the spatial structure and temporal behaviour of such networks. Several projects for the 3D visualisation of neural networks exist, but they focus largely on the exploration of the spatial structure alone, and are using standard 2D screens as output and mouse and keyboard as input devices. In this article, we present NeuVis, a framework for an intuitive and immersive 3D visualisation of spiking neural networks in virtual reality, allowing for a larger variety of input and output devices. We apply NeuVis to NeuCube, a 3-dimensional spiking neural network learning framework, significantly improving the user’s abilities to explore, analyse, and also debug the network. Finally, we discuss further venues of development and alternative render methods that are currently under development and will increase the visual accuracy and realism of the visualisation, as well as further extending its analysis and exploration capabilities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolving Systems Springer Journals

Immersive visualisation of 3-dimensional spiking neural networks

Loading next page...
 
/lp/springer_journal/immersive-visualisation-of-3-dimensional-spiking-neural-networks-DO3Zzqv1b7
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Complexity; Artificial Intelligence (incl. Robotics); Complex Systems
ISSN
1868-6478
eISSN
1868-6486
D.O.I.
10.1007/s12530-016-9170-8
Publisher site
See Article on Publisher Site

Abstract

Recent development in artificial neural networks has led to an increase in performance, but also in complexity and size. This poses a significant challenge for the exploration and analysis of the spatial structure and temporal behaviour of such networks. Several projects for the 3D visualisation of neural networks exist, but they focus largely on the exploration of the spatial structure alone, and are using standard 2D screens as output and mouse and keyboard as input devices. In this article, we present NeuVis, a framework for an intuitive and immersive 3D visualisation of spiking neural networks in virtual reality, allowing for a larger variety of input and output devices. We apply NeuVis to NeuCube, a 3-dimensional spiking neural network learning framework, significantly improving the user’s abilities to explore, analyse, and also debug the network. Finally, we discuss further venues of development and alternative render methods that are currently under development and will increase the visual accuracy and realism of the visualisation, as well as further extending its analysis and exploration capabilities.

Journal

Evolving SystemsSpringer Journals

Published: Nov 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off