Imidazole-functionalized magnetic Fe3O4 nanoparticles: an efficient, green, recyclable catalyst for one-pot Friedländer quinoline synthesis

Imidazole-functionalized magnetic Fe3O4 nanoparticles: an efficient, green, recyclable catalyst... An efficient and cost-effective procedure for preparation of Fe3O4 nanoparticles and supported Brønsted acidic ionic liquid 1-methyl-3-(3-trimethoxysilylpropyl)imidazolium hydrogen sulfate (Fe3O4-IL-HSO4) as a Brønsted acidic ionic liquid and efficient magnetic catalyst is described, together with its use for one-pot synthesis of polysubstituted quinolines through Friedländer condensation of 2-aminoaryl ketones with 1,3-dicarbonyl compounds under solvent-free conditions. The most noteworthy aspects of this methodology are its environmental friendliness, simplicity of operation, excellent yield within short reaction time, easy product isolation, and excellent reusability potential of the catalyst. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Imidazole-functionalized magnetic Fe3O4 nanoparticles: an efficient, green, recyclable catalyst for one-pot Friedländer quinoline synthesis

Loading next page...
 
/lp/springer_journal/imidazole-functionalized-magnetic-fe3o4-nanoparticles-an-efficient-LPpz6UQmAK
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2411-9
Publisher site
See Article on Publisher Site

Abstract

An efficient and cost-effective procedure for preparation of Fe3O4 nanoparticles and supported Brønsted acidic ionic liquid 1-methyl-3-(3-trimethoxysilylpropyl)imidazolium hydrogen sulfate (Fe3O4-IL-HSO4) as a Brønsted acidic ionic liquid and efficient magnetic catalyst is described, together with its use for one-pot synthesis of polysubstituted quinolines through Friedländer condensation of 2-aminoaryl ketones with 1,3-dicarbonyl compounds under solvent-free conditions. The most noteworthy aspects of this methodology are its environmental friendliness, simplicity of operation, excellent yield within short reaction time, easy product isolation, and excellent reusability potential of the catalyst.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off