Imaging of gas flow through a porous medium from a fuel cell bipolar plate by laser-induced fluorescence

Imaging of gas flow through a porous medium from a fuel cell bipolar plate by laser-induced... The flow in a PEM fuel cell bipolar plate with a diagonal channel structure and across a carbon paper backing layer has been experimentally studied. To examine the flow inside the plate, a liquid analogue preserving dynamic similarity has been used, applying laser-induced fluorescence. This analogy, however, cannot be used to study the flow through the carbon paper, because gas and liquid surface tension are not equivalent and their flow through a porous medium will be different. For this analysis this paper proposes as a novel application, the use of acetone vapor planar induced fluorescence. With this technique, image sequences have been obtained to visualize the gas crossing the backing layer while the plate was filled with acetone-seeded air. It has been demonstrated that the pattern of the flow emerging from the diffusion layer follows that of the pressure distribution in the plate. Hence, even an apparently non-uniform velocity distribution of the reactant gases in the plate could result in an acceptable distribution over the catalyzed electrode if the pressure field is sufficiently smooth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Imaging of gas flow through a porous medium from a fuel cell bipolar plate by laser-induced fluorescence

Loading next page...
 
/lp/springer_journal/imaging-of-gas-flow-through-a-porous-medium-from-a-fuel-cell-bipolar-ayT0wWcvYy
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0241-7
Publisher site
See Article on Publisher Site

Abstract

The flow in a PEM fuel cell bipolar plate with a diagonal channel structure and across a carbon paper backing layer has been experimentally studied. To examine the flow inside the plate, a liquid analogue preserving dynamic similarity has been used, applying laser-induced fluorescence. This analogy, however, cannot be used to study the flow through the carbon paper, because gas and liquid surface tension are not equivalent and their flow through a porous medium will be different. For this analysis this paper proposes as a novel application, the use of acetone vapor planar induced fluorescence. With this technique, image sequences have been obtained to visualize the gas crossing the backing layer while the plate was filled with acetone-seeded air. It has been demonstrated that the pattern of the flow emerging from the diffusion layer follows that of the pressure distribution in the plate. Hence, even an apparently non-uniform velocity distribution of the reactant gases in the plate could result in an acceptable distribution over the catalyzed electrode if the pressure field is sufficiently smooth.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 13, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off