Imaginary particle tracking accelerometry based on time-resolved velocity fields

Imaginary particle tracking accelerometry based on time-resolved velocity fields An accurate calculation of material acceleration is important for particle image velocimetry-based pressure reconstruction. Therefore, an imaginary particle tracking accelerometry (IPTA) approach based on time-resolved velocity fields is described in this paper for a better determination of acceleration. Multi-velocity fields and a least squares polynomial fitting of the velocity along imaginary particle trajectories are introduced to improve the acceleration accuracy. The process of imaginary particle tracking is operated iteratively until a convergence condition is satisfied. Then the Lagrangian acceleration (or the material acceleration in the Eulerian coordinates) is acquired by the first-order time derivation of the fitting polynomial. In addition, the sensitivity of the IPTA approach to different levels of noise and parameters that affect its performance is investigated. A criterion is proposed to determine these parameters when using IPTA to calculate the acceleration. Performance of the IPTA method is compared with other velocity-based accelerometry methods, including both Eulerian and Lagrangian methods. Assessments are conducted in a synthetic solid body rotation flow, a synthetic flow of a vortex ring, and an experimental jet flow. The results show that IPTA is a robust method for experimental acceleration determination that can both improve the accuracy of acceleration and provide better physical characteristics of the flow field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Imaginary particle tracking accelerometry based on time-resolved velocity fields

Loading next page...
 
/lp/springer_journal/imaginary-particle-tracking-accelerometry-based-on-time-resolved-cn5Q197D1z
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-017-2394-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial