Image super-resolution via two coupled dictionaries and sparse representation

Image super-resolution via two coupled dictionaries and sparse representation In image processing, the super-resolution (SR) technique has played an important role to perform high-resolution (HR) images from the acquired low-resolution (LR) images. In this paper, a novel technique is proposed that can generate a SR image from a single LR input image. Designed framework can be used in images of different kinds. To reconstruct a HR image, it is necessary to perform an intermediate step, which consists of an initial interpolation; next, the features are extracted from this initial image via convolution operation. Then, the principal component analysis (PCA) is used to reduce information redundancy after features extraction step. Non-overlapping blocks are extracted, and for each block, the sparse representation is performed, which it is later used to recover the HR image. Using the quality objective criteria and subjective visual perception, the proposed technique has been evaluated demonstrating their competitive performance in comparison with state-of-the-art methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Image super-resolution via two coupled dictionaries and sparse representation

Loading next page...
 
/lp/springer_journal/image-super-resolution-via-two-coupled-dictionaries-and-sparse-XhyycetFat
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4968-3
Publisher site
See Article on Publisher Site

Abstract

In image processing, the super-resolution (SR) technique has played an important role to perform high-resolution (HR) images from the acquired low-resolution (LR) images. In this paper, a novel technique is proposed that can generate a SR image from a single LR input image. Designed framework can be used in images of different kinds. To reconstruct a HR image, it is necessary to perform an intermediate step, which consists of an initial interpolation; next, the features are extracted from this initial image via convolution operation. Then, the principal component analysis (PCA) is used to reduce information redundancy after features extraction step. Non-overlapping blocks are extracted, and for each block, the sparse representation is performed, which it is later used to recover the HR image. Using the quality objective criteria and subjective visual perception, the proposed technique has been evaluated demonstrating their competitive performance in comparison with state-of-the-art methods.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jul 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off