Image Restoration in Optical-Acoustic Tomography

Image Restoration in Optical-Acoustic Tomography We consider the optical-acoustic tomography problem. In the general case, the problem is to reconstruct a real-valued function with a compact support in the n-dimensional Euclidean space via its spherical integrals, i.e., integrals over all (n − 1)-dimensional spheres centered at points on some (n − 1)-dimensional hypersurface. We deal with the cases n = 2 and n = 3, which are of the most practical interest from the standpoint of possible medical applications. We suggest a new effective method of reconstruction, develop restoration algorithms, and investigate the quality of the algorithms for these cases. The main result of the paper is construction of explicit approximate reconstruction formulas; from the mathematical standpoint, these formulas give the parametrix for the optical-acoustic tomography problem. The formulas constructed is a background for the restoration algorithms. We performed mathematical experiments to investigate the quality of the restoration algorithms using the generally accepted tomography quality criteria. The results obtain lead to the general conclusion: the quality of the restoration algorithms developed for optical-acoustic tomography is only slightly lower then the quality of the convolution and back projection algorithm used in Radon tomography, which is a standard de facto. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Image Restoration in Optical-Acoustic Tomography

Loading next page...
 
/lp/springer_journal/image-restoration-in-optical-acoustic-tomography-4bcrfmfyDu
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1023/B:PRIT.0000044261.87490.05
Publisher site
See Article on Publisher Site

Abstract

We consider the optical-acoustic tomography problem. In the general case, the problem is to reconstruct a real-valued function with a compact support in the n-dimensional Euclidean space via its spherical integrals, i.e., integrals over all (n − 1)-dimensional spheres centered at points on some (n − 1)-dimensional hypersurface. We deal with the cases n = 2 and n = 3, which are of the most practical interest from the standpoint of possible medical applications. We suggest a new effective method of reconstruction, develop restoration algorithms, and investigate the quality of the algorithms for these cases. The main result of the paper is construction of explicit approximate reconstruction formulas; from the mathematical standpoint, these formulas give the parametrix for the optical-acoustic tomography problem. The formulas constructed is a background for the restoration algorithms. We performed mathematical experiments to investigate the quality of the restoration algorithms using the generally accepted tomography quality criteria. The results obtain lead to the general conclusion: the quality of the restoration algorithms developed for optical-acoustic tomography is only slightly lower then the quality of the convolution and back projection algorithm used in Radon tomography, which is a standard de facto.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 27, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off