Image analysis applied to the study of mixing in a stably stratified shear layer

Image analysis applied to the study of mixing in a stably stratified shear layer The development and breaking of Kelvin–Helmholtz waves is one of the primary causes of mixing in many geophysical and engineering flows with layers of fluids having different densities and horizontal velocities. Although this phenomenon was extensively studied in the field, a complete description can be experimentally obtained only by the use of image analysis techniques that are applicable only in laboratory experiments. The particular nature of the flow, especially before the development of the waves when the flow is parallel but in opposite direction, makes the application of the classical image velocimetry techniques non-trivial. With this in mind, a stably stratified shear flow was reproduced in the laboratory by means of a tilting tank. The velocity and density fields were measured simultaneously with multipoint time-resolved techniques during the formation and development of the Kelvin–Helmholtz waves. A novel particle tracking procedure is proposed that includes the stretching of the acquired images in the direction orthogonal to the main motion. Tests on synthetic images show a meaningful improvement in the effectiveness of particle tracking when using the proposed technique. Laser-Induced Fluorescence (LIF) data have been acquired by a second camera, equipped with a band-pass filter in order to measure only the fluoresced light. Particle Tracking Velocimetry (PTV) and LIF data have been referenced to the same frame by a registration procedure based on an affine transformation. In the range of the parameters investigated during the experiments, the evolution of the interface thickness and sharpness scales with the advective time scale. The analysis of the space–time evolution of the longitudinal statistics gives a comprehensive picture of the development and breaking of the waves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Image analysis applied to the study of mixing in a stably stratified shear layer

Loading next page...
 
/lp/springer_journal/image-analysis-applied-to-the-study-of-mixing-in-a-stably-stratified-cOcylv0u3t
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0520-6
Publisher site
See Article on Publisher Site

Abstract

The development and breaking of Kelvin–Helmholtz waves is one of the primary causes of mixing in many geophysical and engineering flows with layers of fluids having different densities and horizontal velocities. Although this phenomenon was extensively studied in the field, a complete description can be experimentally obtained only by the use of image analysis techniques that are applicable only in laboratory experiments. The particular nature of the flow, especially before the development of the waves when the flow is parallel but in opposite direction, makes the application of the classical image velocimetry techniques non-trivial. With this in mind, a stably stratified shear flow was reproduced in the laboratory by means of a tilting tank. The velocity and density fields were measured simultaneously with multipoint time-resolved techniques during the formation and development of the Kelvin–Helmholtz waves. A novel particle tracking procedure is proposed that includes the stretching of the acquired images in the direction orthogonal to the main motion. Tests on synthetic images show a meaningful improvement in the effectiveness of particle tracking when using the proposed technique. Laser-Induced Fluorescence (LIF) data have been acquired by a second camera, equipped with a band-pass filter in order to measure only the fluoresced light. Particle Tracking Velocimetry (PTV) and LIF data have been referenced to the same frame by a registration procedure based on an affine transformation. In the range of the parameters investigated during the experiments, the evolution of the interface thickness and sharpness scales with the advective time scale. The analysis of the space–time evolution of the longitudinal statistics gives a comprehensive picture of the development and breaking of the waves.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 14, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off