Image analysis applied to study on frictional-drag reduction by electrolytic microbubbles in a turbulent channel flow

Image analysis applied to study on frictional-drag reduction by electrolytic microbubbles in a... We investigate frictional-drag reduction with electrolytic microbubbles based on image measurement of a turbulent flow in a water channel at Re = 4800 (based on the half channel height). Microbubbles with a diameter ranging 30–200 μm can reduce frictional drag by as much as 30% relative to single-phase flow even at low void fractions (α ≈ 3 × 10−4); however, drag reduction is only effective within a limited downstream distance from an electrode array. Arrangement of the optical system allows us to measure the bubble-production rate by water electrolysis from images near the wall and to trace the motion of bubbles. We also measure velocity fields using particle-tracking velocimetry based on a shallow depth-of-field approach by segregating tracer particles from microbubbles. Vertically oscillating microbubbles likely represent interaction with vortical structures near the wall, and bubbles approaching the wall appear to induce negative streamwise velocity relative to the surrounding fluid. We relate the wall friction with the double integral of the Reynolds-stress profile and show that its variation due to microbubbles decreases the drag on the wall. Microbubbles tend to coalesce downstream resulting in a fewer bubbles but with greater size; accordingly, the oscillatory motion diminishes, and the frictional drag rather increases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Image analysis applied to study on frictional-drag reduction by electrolytic microbubbles in a turbulent channel flow

Loading next page...
 
/lp/springer_journal/image-analysis-applied-to-study-on-frictional-drag-reduction-by-q3v7hU0sEa
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0970-5
Publisher site
See Article on Publisher Site

Abstract

We investigate frictional-drag reduction with electrolytic microbubbles based on image measurement of a turbulent flow in a water channel at Re = 4800 (based on the half channel height). Microbubbles with a diameter ranging 30–200 μm can reduce frictional drag by as much as 30% relative to single-phase flow even at low void fractions (α ≈ 3 × 10−4); however, drag reduction is only effective within a limited downstream distance from an electrode array. Arrangement of the optical system allows us to measure the bubble-production rate by water electrolysis from images near the wall and to trace the motion of bubbles. We also measure velocity fields using particle-tracking velocimetry based on a shallow depth-of-field approach by segregating tracer particles from microbubbles. Vertically oscillating microbubbles likely represent interaction with vortical structures near the wall, and bubbles approaching the wall appear to induce negative streamwise velocity relative to the surrounding fluid. We relate the wall friction with the double integral of the Reynolds-stress profile and show that its variation due to microbubbles decreases the drag on the wall. Microbubbles tend to coalesce downstream resulting in a fewer bubbles but with greater size; accordingly, the oscillatory motion diminishes, and the frictional drag rather increases.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 26, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off