Illumina sequencing of bacterial 16S rDNA and 16S rRNA reveals seasonal and species-specific variation in bacterial communities in four moss species

Illumina sequencing of bacterial 16S rDNA and 16S rRNA reveals seasonal and species-specific... In order to better understand the factors that influence bacterial diversity and community composition in moss-associated bacteria, a study of bacterial communities in four moss species collected in three seasons was carried out via high-throughput sequencing of 16S rDNA and 16S rRNA. Moss species included Cratoneuron filicinum, Pylaisiella polyantha, Campyliadelphus polygamum, and Grimmia pilifera, with samples collected in May, July, and October 2015 from rocks at Beijing Songshan National Nature Reserve. In total, the bacterial richness and diversity were high regardless of moss species, sampling season, or data source (DNA vs. RNA). Bacterial sequences were assigned to a total of 558 OTUs and 279 genera in 16 phyla. Proteobacteria and Actinobacteria were the two most abundant phyla, and Cellvibrio, Lapillicoccus, Jatrophihabitans, Friedmanniella, Oligoflexus, and Bosea the most common genera in the samples. A clustering algorithm and principal coordinate analysis revealed that C. filicinum and C. polygamum had similar bacterial communities, as did P. polyantha and G. pilifera. Metabolically active bacteria showed the same pattern in addition to seasonal variation: bacterial communities were most similar in summer and autumn, looking at each moss species separately. In contrast, DNA profiles lacked obvious seasonal dynamics. A partial least squares discriminant analysis identified three groups of samples that correlated with differences in moss species resources. Although bacterial community composition did vary with the sampling season and data source, these were not the most important factors influencing bacterial communities. Previous reports exhibited that mosses have been widely used in biomonitoring of air pollution by enriching some substances or elements in the moss-tag technique and the abundant moss associated bacteria might also be important components involved in the related biological processes. Thus, this survey not only enhanced our understanding of the factors which influence microbial communities in mosses but also would be helpful for better use and development of the moss-tag technique in the environmental biomonitoring. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Illumina sequencing of bacterial 16S rDNA and 16S rRNA reveals seasonal and species-specific variation in bacterial communities in four moss species

Loading next page...
 
/lp/springer_journal/illumina-sequencing-of-bacterial-16s-rdna-and-16s-rrna-reveals-f9qW3EjoOS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-017-8391-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial