Ignition of Particles of Wet Woody Biomass under Convective Diffusion of Water Vapor in the Near-Wall Region

Ignition of Particles of Wet Woody Biomass under Convective Diffusion of Water Vapor in the... This paper presents the results of an experimental and theoretical study of heat and mass transfer during ignition of wet wood particles in a high-temperature gas medium. Experiments were carried out in a setup which provides conditions similar to the combustion spaces of boiler units. The main heat transfer parameters (ambient temperature) and integrated ignition characteristics (ignition delay) were measured. The measurement error of these parameters did not exceed 18%. The convective transfer of water vapor formed during evaporation of pore moisture and pyrolysis products were found to have an insignificant effect on the ignition characteristics and conditions. From the results of the experiments, a mathematical model of the ignition process was developed which describes the simultaneous occurrence of the main processes of thermal preparation under conditions of intense phase (evaporation of water) and thermochemical transformations (thermal decomposition of the organic part of the fuel, thermochemical interaction between water vapor and carbon coke, ignition of volatiles) taking into account the convective diffusion of water vapor and pyrolysis products in the near-wall gas area during the induction period. The theoretical ignition delay is in satisfactory (within the confidence interval) agreement with the experimental value. The numerical model of the diffusion flame adequately (good agreement between experimental and theoretical ignition delays) describes the ignition of a wet wood particle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Combustion, Explosion, and Shock Waves Springer Journals

Ignition of Particles of Wet Woody Biomass under Convective Diffusion of Water Vapor in the Near-Wall Region

Loading next page...
 
/lp/springer_journal/ignition-of-particles-of-wet-woody-biomass-under-convective-diffusion-IIWpIXZWTP
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Physics; Classical Mechanics; Classical and Continuum Physics; Physical Chemistry; Vibration, Dynamical Systems, Control; Engineering, general
ISSN
0010-5082
eISSN
1573-8345
D.O.I.
10.1134/S0010508218030097
Publisher site
See Article on Publisher Site

Abstract

This paper presents the results of an experimental and theoretical study of heat and mass transfer during ignition of wet wood particles in a high-temperature gas medium. Experiments were carried out in a setup which provides conditions similar to the combustion spaces of boiler units. The main heat transfer parameters (ambient temperature) and integrated ignition characteristics (ignition delay) were measured. The measurement error of these parameters did not exceed 18%. The convective transfer of water vapor formed during evaporation of pore moisture and pyrolysis products were found to have an insignificant effect on the ignition characteristics and conditions. From the results of the experiments, a mathematical model of the ignition process was developed which describes the simultaneous occurrence of the main processes of thermal preparation under conditions of intense phase (evaporation of water) and thermochemical transformations (thermal decomposition of the organic part of the fuel, thermochemical interaction between water vapor and carbon coke, ignition of volatiles) taking into account the convective diffusion of water vapor and pyrolysis products in the near-wall gas area during the induction period. The theoretical ignition delay is in satisfactory (within the confidence interval) agreement with the experimental value. The numerical model of the diffusion flame adequately (good agreement between experimental and theoretical ignition delays) describes the ignition of a wet wood particle.

Journal

Combustion, Explosion, and Shock WavesSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off