Identifying important factors influencing corn yield and grain quality variability using artificial neural networks

Identifying important factors influencing corn yield and grain quality variability using... Soil, landscape and hybrid factors are known to influence yield and quality of corn (Zea mays L.). This study employed artificial neural network (ANN) analysis to evaluate the relative importance of selected soil, landscape and seed hybrid factors on yield and grain quality in two Illinois, USA fields. About 7 to 13 important factors were identified that could explain from 61% to 99% of the observed yield or quality variability in the study site-years. Hybrid was found to be the most important factor overall for quality in both fields, and for yield as well in Field 1. The relative importance of soil and landscape factors for corn yield and quality and their relationships differed by hybrid and field. Cation exchange capacity (CEC) and relative elevation were consistently identified as among the top four most important soil and landscape factors for both corn yield and quality in both fields in 2000. Aspect and Zn were among the top five most important factors in Fields 1 and 2, respectively. Compound topographic index (CTI), profile curvature and tangential curvature were, in general, not important in the study site-years. The response curves generated by the ANN models were more informative than simple correlation coefficients or coefficients in multiple regression equations. We conclude that hybrid was more important than soil and landscape factors for consideration in precision crop management, especially when grain quality was a management objective. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Identifying important factors influencing corn yield and grain quality variability using artificial neural networks

Loading next page...
 
/lp/springer_journal/identifying-important-factors-influencing-corn-yield-and-grain-quality-J0XS2S40uf
Publisher
Springer US
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-006-9004-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial