Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identifying important factors influencing corn yield and grain quality variability using artificial neural networks

Identifying important factors influencing corn yield and grain quality variability using... Soil, landscape and hybrid factors are known to influence yield and quality of corn (Zea mays L.). This study employed artificial neural network (ANN) analysis to evaluate the relative importance of selected soil, landscape and seed hybrid factors on yield and grain quality in two Illinois, USA fields. About 7 to 13 important factors were identified that could explain from 61% to 99% of the observed yield or quality variability in the study site-years. Hybrid was found to be the most important factor overall for quality in both fields, and for yield as well in Field 1. The relative importance of soil and landscape factors for corn yield and quality and their relationships differed by hybrid and field. Cation exchange capacity (CEC) and relative elevation were consistently identified as among the top four most important soil and landscape factors for both corn yield and quality in both fields in 2000. Aspect and Zn were among the top five most important factors in Fields 1 and 2, respectively. Compound topographic index (CTI), profile curvature and tangential curvature were, in general, not important in the study site-years. The response curves generated by the ANN models were more informative than simple correlation coefficients or coefficients in multiple regression equations. We conclude that hybrid was more important than soil and landscape factors for consideration in precision crop management, especially when grain quality was a management objective. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Identifying important factors influencing corn yield and grain quality variability using artificial neural networks

Loading next page...
 
/lp/springer_journal/identifying-important-factors-influencing-corn-yield-and-grain-quality-J0XS2S40uf

References (50)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
DOI
10.1007/s11119-006-9004-y
Publisher site
See Article on Publisher Site

Abstract

Soil, landscape and hybrid factors are known to influence yield and quality of corn (Zea mays L.). This study employed artificial neural network (ANN) analysis to evaluate the relative importance of selected soil, landscape and seed hybrid factors on yield and grain quality in two Illinois, USA fields. About 7 to 13 important factors were identified that could explain from 61% to 99% of the observed yield or quality variability in the study site-years. Hybrid was found to be the most important factor overall for quality in both fields, and for yield as well in Field 1. The relative importance of soil and landscape factors for corn yield and quality and their relationships differed by hybrid and field. Cation exchange capacity (CEC) and relative elevation were consistently identified as among the top four most important soil and landscape factors for both corn yield and quality in both fields in 2000. Aspect and Zn were among the top five most important factors in Fields 1 and 2, respectively. Compound topographic index (CTI), profile curvature and tangential curvature were, in general, not important in the study site-years. The response curves generated by the ANN models were more informative than simple correlation coefficients or coefficients in multiple regression equations. We conclude that hybrid was more important than soil and landscape factors for consideration in precision crop management, especially when grain quality was a management objective.

Journal

Precision AgricultureSpringer Journals

Published: Apr 7, 2006

There are no references for this article.