Identifying and assessing evidence for recent shoreline change attributable to uncommonly rapid sea-level rise in Pohnpei, Federated States of Micronesia, Northwest Pacific Ocean

Identifying and assessing evidence for recent shoreline change attributable to uncommonly rapid... Those parts of the northwest Pacific Ocean where sea level has been rising fastest over the past few decades include islands in the Federated States of Micronesia. To understand the possible effects of rapid sea-level rise, coastal surveys were undertaken within Pohnpei State in October 2014. The high volcanic island of Pohnpei was targeted along with 10 reef-edge island groups on its surrounding barrier reef as well as islands on Ant Atoll, 15 km southwest. Evidence of shoreline erosion attributable to sea-level rise is found only in a few places along the main island’s northeast (windward) coast. High rainfall has led to the accumulation of terrestrial sediment along the coast that is covered with mangrove forest 2–3 km broad in places shielding the island’s coast from wave erosion. A different picture is found on reef-edge islands around which erosion over the last few decades can mostly be explained by recent sea-level rise. Islands have disappeared within living memory, others drastically reduced in size in the past decade, while others – their sand cover washed away – are being reduced to a skeletal (boulders anchored by mangrove) state. The coasts of Ant Atoll appear little affected by erosion ascribable to sea-level rise. In summary, fewer effects than might be expected from recent sea-level rise were seen in Pohnpei, largely for reasons of natural coastal resilience or a lack of record, especially for reef-edge islands. The importance of mangrove conservation and an understanding of sediment dynamics on the broad reef-lagoon shelf surrounding the main island is manifest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Coastal Conservation Springer Journals

Identifying and assessing evidence for recent shoreline change attributable to uncommonly rapid sea-level rise in Pohnpei, Federated States of Micronesia, Northwest Pacific Ocean

Loading next page...
 
/lp/springer_journal/identifying-and-assessing-evidence-for-recent-shoreline-change-DhwoVOO2ZZ
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Geography; Geography, general; Coastal Sciences; Oceanography; Nature Conservation; Remote Sensing/Photogrammetry
ISSN
1400-0350
eISSN
1874-7841
D.O.I.
10.1007/s11852-017-0531-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial