Identification of vortical structures inside the human pharynx/larynx region from POD-reconstructed velocity fields

Identification of vortical structures inside the human pharynx/larynx region from... This paper reports an experimental investigation of the vortical structures in the pharynx/larynx region of an idealised human extra-thoracic airway obtained using particle image velocimetry (PIV). The inlet velocity was 0.13 m/s yielding a Reynolds number, based on the inlet condition, of 670. Two thousand images were acquired at each location at a framing rate of 2 Hz. The proper orthogonal decomposition method was applied to the PIV data. Only a few modes were used for POD reconstruction which recovered about 60 % of the turbulent kinetic energy. A vortex identification algorithm was employed to identify and measure properties of the structures. This step was followed by a statistical analysis of the distribution of number, size, and strength of these vortices. The results reveal the formation of a large number of structures identified along two planes in the pharynx/larynx region. This study also revealed an increased strength in the counter-clockwise structures as compared to clockwise structures in the pharynx region. As well, there is some evidence to suggest that the vortical structures, whose axes are perpendicular to the sagittal plane, change their orientation as they proceed further into the laryngeal region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Identification of vortical structures inside the human pharynx/larynx region from POD-reconstructed velocity fields

Loading next page...
 
/lp/springer_journal/identification-of-vortical-structures-inside-the-human-pharynx-larynx-9kGC6HXPCd
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1293-5
Publisher site
See Article on Publisher Site

Abstract

This paper reports an experimental investigation of the vortical structures in the pharynx/larynx region of an idealised human extra-thoracic airway obtained using particle image velocimetry (PIV). The inlet velocity was 0.13 m/s yielding a Reynolds number, based on the inlet condition, of 670. Two thousand images were acquired at each location at a framing rate of 2 Hz. The proper orthogonal decomposition method was applied to the PIV data. Only a few modes were used for POD reconstruction which recovered about 60 % of the turbulent kinetic energy. A vortex identification algorithm was employed to identify and measure properties of the structures. This step was followed by a statistical analysis of the distribution of number, size, and strength of these vortices. The results reveal the formation of a large number of structures identified along two planes in the pharynx/larynx region. This study also revealed an increased strength in the counter-clockwise structures as compared to clockwise structures in the pharynx region. As well, there is some evidence to suggest that the vortical structures, whose axes are perpendicular to the sagittal plane, change their orientation as they proceed further into the laryngeal region.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off