Identification of vortical structures inside the human pharynx/larynx region from POD-reconstructed velocity fields

Identification of vortical structures inside the human pharynx/larynx region from... This paper reports an experimental investigation of the vortical structures in the pharynx/larynx region of an idealised human extra-thoracic airway obtained using particle image velocimetry (PIV). The inlet velocity was 0.13 m/s yielding a Reynolds number, based on the inlet condition, of 670. Two thousand images were acquired at each location at a framing rate of 2 Hz. The proper orthogonal decomposition method was applied to the PIV data. Only a few modes were used for POD reconstruction which recovered about 60 % of the turbulent kinetic energy. A vortex identification algorithm was employed to identify and measure properties of the structures. This step was followed by a statistical analysis of the distribution of number, size, and strength of these vortices. The results reveal the formation of a large number of structures identified along two planes in the pharynx/larynx region. This study also revealed an increased strength in the counter-clockwise structures as compared to clockwise structures in the pharynx region. As well, there is some evidence to suggest that the vortical structures, whose axes are perpendicular to the sagittal plane, change their orientation as they proceed further into the laryngeal region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Identification of vortical structures inside the human pharynx/larynx region from POD-reconstructed velocity fields

Loading next page...
 
/lp/springer_journal/identification-of-vortical-structures-inside-the-human-pharynx-larynx-9kGC6HXPCd
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1293-5
Publisher site
See Article on Publisher Site

Abstract

This paper reports an experimental investigation of the vortical structures in the pharynx/larynx region of an idealised human extra-thoracic airway obtained using particle image velocimetry (PIV). The inlet velocity was 0.13 m/s yielding a Reynolds number, based on the inlet condition, of 670. Two thousand images were acquired at each location at a framing rate of 2 Hz. The proper orthogonal decomposition method was applied to the PIV data. Only a few modes were used for POD reconstruction which recovered about 60 % of the turbulent kinetic energy. A vortex identification algorithm was employed to identify and measure properties of the structures. This step was followed by a statistical analysis of the distribution of number, size, and strength of these vortices. The results reveal the formation of a large number of structures identified along two planes in the pharynx/larynx region. This study also revealed an increased strength in the counter-clockwise structures as compared to clockwise structures in the pharynx region. As well, there is some evidence to suggest that the vortical structures, whose axes are perpendicular to the sagittal plane, change their orientation as they proceed further into the laryngeal region.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 27, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off