Identification of transcription factor binding sites in the human genome sequence

Identification of transcription factor binding sites in the human genome sequence The identification of transcription factor binding sites (TFBS) is an important initial step in determining the DNA signals that regulate transcription of the genome. We tested the performance of three distinct computational methods for the identification of TFBS applied to the human genome sequence, as judged by their ability to recover the location of experimentally determined, and uniquely mapped, TFBS taken from the TRANSFAC database. These identification methods all attempt to filter the quantity of TFBS identified by aligning positional weight matrices that describe the binding site and employ either (i) a P-value threshold for accepting a site, (ii) an over-representation measure of neighboring sites, or (iii) conservation with the mouse genome and application of P-value thresholds. The results show that the best recognition of TFBS is achieved by combining the identification of TFBS in regions of human–mouse conservation and also by applying a high stringency P-value to the TFBS identified in non-coding regions that are not conserved. Additionally, we find that only half of the 481 experimentally mapped sites can be found in sequence regions conserved with mouse, but the predictive power of the binding site identification method is up to threefold higher in the conserved regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Identification of transcription factor binding sites in the human genome sequence

Loading next page...
 
/lp/springer_journal/identification-of-transcription-factor-binding-sites-in-the-human-ZVrKbVjRWH
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-002-2175-6
Publisher site
See Article on Publisher Site

Abstract

The identification of transcription factor binding sites (TFBS) is an important initial step in determining the DNA signals that regulate transcription of the genome. We tested the performance of three distinct computational methods for the identification of TFBS applied to the human genome sequence, as judged by their ability to recover the location of experimentally determined, and uniquely mapped, TFBS taken from the TRANSFAC database. These identification methods all attempt to filter the quantity of TFBS identified by aligning positional weight matrices that describe the binding site and employ either (i) a P-value threshold for accepting a site, (ii) an over-representation measure of neighboring sites, or (iii) conservation with the mouse genome and application of P-value thresholds. The results show that the best recognition of TFBS is achieved by combining the identification of TFBS in regions of human–mouse conservation and also by applying a high stringency P-value to the TFBS identified in non-coding regions that are not conserved. Additionally, we find that only half of the 481 experimentally mapped sites can be found in sequence regions conserved with mouse, but the predictive power of the binding site identification method is up to threefold higher in the conserved regions.

Journal

Mammalian GenomeSpringer Journals

Published: Sep 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off