Identification of Tobacco HIN1 and Two Closely Related Genes as Spermine-Responsive Genes and their Differential Expression During the Tobacco Mosaic Virus-Induced Hypersensitive Response and During Leaf- and Flower-Senescence

Identification of Tobacco HIN1 and Two Closely Related Genes as Spermine-Responsive Genes and... Previously we showed that the polyamine spermine (Spm) specifically leads to mitochondrial dysfunction in tobacco that is followed by the activation of salicylic acid-induced protein kinase and wound-induced protein kinase. To identify the possible downstream components of the Spm signalling pathway, we isolated Spm-responsive genes by a differential hybridization approach. This showed that the harpin-induced 1 (HIN1) gene is responsive to Spm. Genomic Southern analysis showed that HIN1 constitutes a multi-gene family and this led to the isolation of two novel HIN1-like tobacco cDNAs that we designated as HIN9 and HIN18. Both genes are also responsive to Spm, albeit HIN18 is induced weakly compared to HIN1 and HIN9. As HIN1 is up-regulated both during the hypersensitive response (HR) generated by an incompatible plant-pathogen interaction and during senescence, we compared the expression of the three HIN1 family genes in these situations. All three were responsive to HR due to Tobacco mosaic virus infection, although HIN18 was less efficiently induced, and HIN1 and HIN18 were both strongly up-regulated during leaf- and flower-senescence. This suggests that the signalling pathways in the HR and senescence overlap somehow but are distinct. That HIN1 and its closely related genes are Spm-responsive genes also supports the idea that Spm plays a role as a signal transmitter in the HR process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of Tobacco HIN1 and Two Closely Related Genes as Spermine-Responsive Genes and their Differential Expression During the Tobacco Mosaic Virus-Induced Hypersensitive Response and During Leaf- and Flower-Senescence

Loading next page...
 
/lp/springer_journal/identification-of-tobacco-hin1-and-two-closely-related-genes-as-x87usEcC9e
Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000038276.95539.39
Publisher site
See Article on Publisher Site

Abstract

Previously we showed that the polyamine spermine (Spm) specifically leads to mitochondrial dysfunction in tobacco that is followed by the activation of salicylic acid-induced protein kinase and wound-induced protein kinase. To identify the possible downstream components of the Spm signalling pathway, we isolated Spm-responsive genes by a differential hybridization approach. This showed that the harpin-induced 1 (HIN1) gene is responsive to Spm. Genomic Southern analysis showed that HIN1 constitutes a multi-gene family and this led to the isolation of two novel HIN1-like tobacco cDNAs that we designated as HIN9 and HIN18. Both genes are also responsive to Spm, albeit HIN18 is induced weakly compared to HIN1 and HIN9. As HIN1 is up-regulated both during the hypersensitive response (HR) generated by an incompatible plant-pathogen interaction and during senescence, we compared the expression of the three HIN1 family genes in these situations. All three were responsive to HR due to Tobacco mosaic virus infection, although HIN18 was less efficiently induced, and HIN1 and HIN18 were both strongly up-regulated during leaf- and flower-senescence. This suggests that the signalling pathways in the HR and senescence overlap somehow but are distinct. That HIN1 and its closely related genes are Spm-responsive genes also supports the idea that Spm plays a role as a signal transmitter in the HR process.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off