Identification of the SRO gene family in apples (Malus×domestica) with a functional characterization of MdRCD1

Identification of the SRO gene family in apples (Malus×domestica) with a functional... RCD1 is a member of the plant-specific SRO protein family. Several SRO genes have been functionally identified in the regulation of abiotic stresses in Arabidopsis and other plant species. However, the function of SROs is largely unknown in apple (Malus×domestica). In this study, six MdSRO-encoding genes were isolated, categorized into two types and mapped to six chromosomes. The phylogenetic analysis demonstrated that the sequences of the AtSRO and MdSRO proteins are highly conserved. Subsequently, expression analysis showed that MdSRO genes had different expression profiles in different tissues and in response to various stresses. Finally, MdRCD1 was isolated for functional identification. The results showed that resistance to oxidation stress in apple calli was enhanced by MdRCD1 overexpression and weakened by MdRCD1 suppression. MdRCD1 also played a crucial role in the regulation of ROS homeostasis in transgenic apple calli and Arabidopsis. Ectopic expression of MdRCD1 significantly enhanced resistance to salt and oxidative stresses in transgenic lines. In addition, MdRCD1 also enhanced drought tolerance due to its influence on stomatal opening. Based on these results, we conclude that MdRCD1 is an important regulator in abiotic stress response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Genetics & Genomes Springer Journals

Identification of the SRO gene family in apples (Malus×domestica) with a functional characterization of MdRCD1

Loading next page...
 
/lp/springer_journal/identification-of-the-sro-gene-family-in-apples-malus-domestica-with-a-4c0inuBJsS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Forestry; Plant Genetics and Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology
ISSN
1614-2942
eISSN
1614-2950
D.O.I.
10.1007/s11295-017-1175-3
Publisher site
See Article on Publisher Site

Abstract

RCD1 is a member of the plant-specific SRO protein family. Several SRO genes have been functionally identified in the regulation of abiotic stresses in Arabidopsis and other plant species. However, the function of SROs is largely unknown in apple (Malus×domestica). In this study, six MdSRO-encoding genes were isolated, categorized into two types and mapped to six chromosomes. The phylogenetic analysis demonstrated that the sequences of the AtSRO and MdSRO proteins are highly conserved. Subsequently, expression analysis showed that MdSRO genes had different expression profiles in different tissues and in response to various stresses. Finally, MdRCD1 was isolated for functional identification. The results showed that resistance to oxidation stress in apple calli was enhanced by MdRCD1 overexpression and weakened by MdRCD1 suppression. MdRCD1 also played a crucial role in the regulation of ROS homeostasis in transgenic apple calli and Arabidopsis. Ectopic expression of MdRCD1 significantly enhanced resistance to salt and oxidative stresses in transgenic lines. In addition, MdRCD1 also enhanced drought tolerance due to its influence on stomatal opening. Based on these results, we conclude that MdRCD1 is an important regulator in abiotic stress response.

Journal

Tree Genetics & GenomesSpringer Journals

Published: Aug 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off