Identification of rose phenylacetaldehyde synthase by functional complementation in yeast

Identification of rose phenylacetaldehyde synthase by functional complementation in yeast Rose flowers, like flowers and fruits of many other plants, produce and emit the aromatic volatiles 2-phenylacetaldehyde (PAA) and 2-phenylethylalchohol (PEA) which have a distinctive flowery/rose-like scent. Previous studies in rose have shown that, similar to petunia flowers, PAA is formed from l-phenylalanine via pyridoxal-5′-phosphate-dependent l-aromatic amino acid decarboxylase. Here we demonstrate the use of a Saccharomyces cerevisiae aro10∆ mutant to functionally characterize a Rosa hybrida cv. Fragrance Cloud sequence (RhPAAS) homologous to petunia phenylacetaldehyde synthase (PhPAAS). Volatile headspace analysis of the aro10∆ knockout strain showed that it produces up to eight times less PAA and PEA than the WT. Expression of RhPAAS in aro10∆ complemented the yeast’s mutant phenotype and elevated PAA levels, similar to petunia PhPAAS. PEA production levels were also enhanced in both aro10∆ and WT strains transformed with RhPAAS, implying an application for metabolic engineering of PEA biosynthesis in yeast. Characterization of spatial and temporal RhPAAS transcript accumulation in rose revealed it to be specific to floral tissues, peaking in mature flowers, i.e., coinciding with floral scent production and essentially identical to other rose scent-related genes. RhPAAS transcript, as well as PAA and PEA production in flowers, displayed a daily rhythmic behavior, reaching peak levels during the late afternoon hours. Examination of oscillation of RhPAAS transcript levels under free-running conditions suggested involvement of the endogenous clock in the regulation of RhPAAS expression in rose flowers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of rose phenylacetaldehyde synthase by functional complementation in yeast

Loading next page...
 
/lp/springer_journal/identification-of-rose-phenylacetaldehyde-synthase-by-functional-6hIK0WGBab
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9564-0
Publisher site
See Article on Publisher Site

Abstract

Rose flowers, like flowers and fruits of many other plants, produce and emit the aromatic volatiles 2-phenylacetaldehyde (PAA) and 2-phenylethylalchohol (PEA) which have a distinctive flowery/rose-like scent. Previous studies in rose have shown that, similar to petunia flowers, PAA is formed from l-phenylalanine via pyridoxal-5′-phosphate-dependent l-aromatic amino acid decarboxylase. Here we demonstrate the use of a Saccharomyces cerevisiae aro10∆ mutant to functionally characterize a Rosa hybrida cv. Fragrance Cloud sequence (RhPAAS) homologous to petunia phenylacetaldehyde synthase (PhPAAS). Volatile headspace analysis of the aro10∆ knockout strain showed that it produces up to eight times less PAA and PEA than the WT. Expression of RhPAAS in aro10∆ complemented the yeast’s mutant phenotype and elevated PAA levels, similar to petunia PhPAAS. PEA production levels were also enhanced in both aro10∆ and WT strains transformed with RhPAAS, implying an application for metabolic engineering of PEA biosynthesis in yeast. Characterization of spatial and temporal RhPAAS transcript accumulation in rose revealed it to be specific to floral tissues, peaking in mature flowers, i.e., coinciding with floral scent production and essentially identical to other rose scent-related genes. RhPAAS transcript, as well as PAA and PEA production in flowers, displayed a daily rhythmic behavior, reaching peak levels during the late afternoon hours. Examination of oscillation of RhPAAS transcript levels under free-running conditions suggested involvement of the endogenous clock in the regulation of RhPAAS expression in rose flowers.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off