Identification of RNA regions that determine temperature sensitivities in betanodaviruses

Identification of RNA regions that determine temperature sensitivities in betanodaviruses Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. The larger genomic segment, RNA1 (~3.1 kb), encodes an RNA-dependent RNA polymerase (protein A), and the smaller genomic segment RNA2 (~1.4 kb) codes for the coat protein. These viruses can be classified into four genotypes, designated striped jack nervous necrosis virus (SJNNV), redspotted grouper nervous necrosis virus (RGNNV), tiger puffer nervous necrosis virus (TPNNV), and barfin flounder nervous necrosis virus (BFNNV), based on similarities in their partial RNA2 sequences. The optimal temperatures for the growth of these viruses are 20–25°C (SJNNV), 25–30°C (RGNNV), 20°C (TPNNV), and 15–20°C (BFNNV). However, little is known about the mechanisms underlying the temperature sensitivity of these viruses. We first constructed two reassortants between SJNNV and RGNNV to test their temperature sensitivity. The levels of viral growth and RNA replication of these reassortants and parental viruses in cultured fish cells were similar at 25°C. However, the levels of all of the viruses but RGNNV were markedly reduced at 30°C. These results indicate that both RNA1 and RNA2 control the temperature sensitivity of betanodaviruses by modulating RNA replication or earlier viral growth processes. We then constructed ten mutated RGNNVs, the RNA1 segments of which were chimeric between SJNNV and RGNNV, and showed that only chimeric viruses bearing the RGNNV RNA1 region, encoding amino acid residues 1–445, grew similarly to the parental RGNNV at 30°C. This portion of protein A is known to serve as a mitochondrial-targeting signal rather than functioning as an enzymatic domain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Identification of RNA regions that determine temperature sensitivities in betanodaviruses

Loading next page...
 
/lp/springer_journal/identification-of-rna-regions-that-determine-temperature-sensitivities-dReh80opU0
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-010-0736-7
Publisher site
See Article on Publisher Site

Abstract

Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. The larger genomic segment, RNA1 (~3.1 kb), encodes an RNA-dependent RNA polymerase (protein A), and the smaller genomic segment RNA2 (~1.4 kb) codes for the coat protein. These viruses can be classified into four genotypes, designated striped jack nervous necrosis virus (SJNNV), redspotted grouper nervous necrosis virus (RGNNV), tiger puffer nervous necrosis virus (TPNNV), and barfin flounder nervous necrosis virus (BFNNV), based on similarities in their partial RNA2 sequences. The optimal temperatures for the growth of these viruses are 20–25°C (SJNNV), 25–30°C (RGNNV), 20°C (TPNNV), and 15–20°C (BFNNV). However, little is known about the mechanisms underlying the temperature sensitivity of these viruses. We first constructed two reassortants between SJNNV and RGNNV to test their temperature sensitivity. The levels of viral growth and RNA replication of these reassortants and parental viruses in cultured fish cells were similar at 25°C. However, the levels of all of the viruses but RGNNV were markedly reduced at 30°C. These results indicate that both RNA1 and RNA2 control the temperature sensitivity of betanodaviruses by modulating RNA replication or earlier viral growth processes. We then constructed ten mutated RGNNVs, the RNA1 segments of which were chimeric between SJNNV and RGNNV, and showed that only chimeric viruses bearing the RGNNV RNA1 region, encoding amino acid residues 1–445, grew similarly to the parental RGNNV at 30°C. This portion of protein A is known to serve as a mitochondrial-targeting signal rather than functioning as an enzymatic domain.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off