Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle

Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the... Yeast two-hybrid assays were used to identify rice proteins interacting with two rice cyclins and other proteins potentially involved in cell cycling. The DNA sequences encoding 119 protein fragments identified were then compared by BLAST against proteins in GenBank. The proteins found include myosin-like proteins, transcription factors, kinesins, centromere proteins and undefined proteins. Based on interactions with cyclins and other elements required for cycling, we believe the undefined proteins may be involved in associated cycling processes. The identification of proteins involved in cell cycle regulation in rice may allow for the control of agronomic traits involving plant growth or development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of rice (Oryza sativa) proteins linked to the cyclin-mediated regulation of the cell cycle

Loading next page...
 
/lp/springer_journal/identification-of-rice-oryza-sativa-proteins-linked-to-the-cyclin-pYecPj0fYZ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000007001.30865.0f
Publisher site
See Article on Publisher Site

Abstract

Yeast two-hybrid assays were used to identify rice proteins interacting with two rice cyclins and other proteins potentially involved in cell cycling. The DNA sequences encoding 119 protein fragments identified were then compared by BLAST against proteins in GenBank. The proteins found include myosin-like proteins, transcription factors, kinesins, centromere proteins and undefined proteins. Based on interactions with cyclins and other elements required for cycling, we believe the undefined proteins may be involved in associated cycling processes. The identification of proteins involved in cell cycle regulation in rice may allow for the control of agronomic traits involving plant growth or development.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off