Identification of quantitative trait loci for prolificacy and growth in mice

Identification of quantitative trait loci for prolificacy and growth in mice Marker-quantitative trait locus (QTL) linkage was evaluated in F2 intercross and backcross mouse populations derived from stocks differing dramatically in prolificacy and mature weight. A highly prolific outbred Quackenbush-Swiss mouse line, or an inbred line derived from it (16.62 ± 0.22 and 14.64 ± 0.27 pups per litter, respectively) were used as one of the grandparents in these populations. The less prolific C57BL/6J inbred mouse line (6.67 ± 0.37 pups per litter) was used as the other grandparent. Linkage was evaluated in a three-step process that involved selective genotyping of F2 intercross progeny representing extremes for prolificacy, genotyping of the full F2 for chromosomal regions potentially associated with prolificacy, and genotyping of the backcross for genomic regions significantly associated with prolificacy in the F2. Segments of Chromosomes (Chrs) 2 and 4 were significantly (P < 0.05, experiment-wise error rate) associated with prolificacy, and LOD scores suggestive of linkage were observed for litter size on Chr 9 and growth on Chrs 4 and 11. Existence of growth QTL was also supported by marker effects that were significant (P < 0.05) or approaching significance (P < 0.10) in the backcross. Additive litter size QTL effects ranged from 0.56 to 0.79 pups per litter, and dominance deviations ranged from −0.56 to 1.19 pups per litter, suggesting overdominance as a possible mode of gene action in some cases. The observation of pleiotropic or linked QTL for growth and prolificacy corresponds well with results from many selection experiments identifying positively correlated responses to selection for these two traits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Identification of quantitative trait loci for prolificacy and growth in mice

Loading next page...
1
 
/lp/springer_journal/identification-of-quantitative-trait-loci-for-prolificacy-and-growth-gGSOd9yLxE
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer-Verlag New York Inc
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900696
Publisher site
See Article on Publisher Site

Abstract

Marker-quantitative trait locus (QTL) linkage was evaluated in F2 intercross and backcross mouse populations derived from stocks differing dramatically in prolificacy and mature weight. A highly prolific outbred Quackenbush-Swiss mouse line, or an inbred line derived from it (16.62 ± 0.22 and 14.64 ± 0.27 pups per litter, respectively) were used as one of the grandparents in these populations. The less prolific C57BL/6J inbred mouse line (6.67 ± 0.37 pups per litter) was used as the other grandparent. Linkage was evaluated in a three-step process that involved selective genotyping of F2 intercross progeny representing extremes for prolificacy, genotyping of the full F2 for chromosomal regions potentially associated with prolificacy, and genotyping of the backcross for genomic regions significantly associated with prolificacy in the F2. Segments of Chromosomes (Chrs) 2 and 4 were significantly (P < 0.05, experiment-wise error rate) associated with prolificacy, and LOD scores suggestive of linkage were observed for litter size on Chr 9 and growth on Chrs 4 and 11. Existence of growth QTL was also supported by marker effects that were significant (P < 0.05) or approaching significance (P < 0.10) in the backcross. Additive litter size QTL effects ranged from 0.56 to 0.79 pups per litter, and dominance deviations ranged from −0.56 to 1.19 pups per litter, suggesting overdominance as a possible mode of gene action in some cases. The observation of pleiotropic or linked QTL for growth and prolificacy corresponds well with results from many selection experiments identifying positively correlated responses to selection for these two traits.

Journal

Mammalian GenomeSpringer Journals

Published: Mar 28, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off