Identification of preferred binding sites of a light-inducible DNA-binding factor (MNF1) within 5′-upstream sequence of C4-type phosphoenolpyruvate carboxylase gene in maize

Identification of preferred binding sites of a light-inducible DNA-binding factor (MNF1) within... MNF1 is a factor which specifically binds to a 318 bp fragment (-1012 to -695) in the 5′-flanking region of the C4-type phosphoenolpyruvate carboxylase gene in Zea mays (Yanagisawa et al., Mol Gen Genet 224 (1990) 325–332). The most preferred binding site of MNF1 determined by a 2 bp mutation-scanning assay was an octamer sequence, GTGCCCTT, which is located within the repeated sequences (RS1; -886 to -849, -846 to -807). Furthermore, a PCR-mediated selection-amplification assay identified both the octamer sequence, GTGCCC(A/T)(A/T), and an additional sequence, CC(G/A)CCC, the latter of which was similar to the Sp1 sites in vertebrates. Specific binding of MNF1 to each of the supposed binding sites was confirmed with double-stranded monomers as probes. Considering native molecular mass of MNF1 (ca. 500 kDa), a protein complex is expected. In addition, MNF1 is anticipated to have two distinct DNA-binding proteins since the MNF1 binding to CCGCCC element was 1,10-phenanthroline-dependent whereas the MNF1 binding to the octamer was independent. Wide distribution of the MNF1 binding sequences within the 1 kb promoter region accounts for broad interactions of MNF1. Moreover, specific DNA binding due to MNF1, which was not observed in the nuclear extract derived from germinated and cultivated plants in darkness, appeared after a white-light pulse. This finding suggests the involvement of the protein complex in the light-dependent transcriptional control in the gene expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of preferred binding sites of a light-inducible DNA-binding factor (MNF1) within 5′-upstream sequence of C4-type phosphoenolpyruvate carboxylase gene in maize

Loading next page...
 
/lp/springer_journal/identification-of-preferred-binding-sites-of-a-light-inducible-dna-uPwgMKxvkx
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006085812507
Publisher site
See Article on Publisher Site

Abstract

MNF1 is a factor which specifically binds to a 318 bp fragment (-1012 to -695) in the 5′-flanking region of the C4-type phosphoenolpyruvate carboxylase gene in Zea mays (Yanagisawa et al., Mol Gen Genet 224 (1990) 325–332). The most preferred binding site of MNF1 determined by a 2 bp mutation-scanning assay was an octamer sequence, GTGCCCTT, which is located within the repeated sequences (RS1; -886 to -849, -846 to -807). Furthermore, a PCR-mediated selection-amplification assay identified both the octamer sequence, GTGCCC(A/T)(A/T), and an additional sequence, CC(G/A)CCC, the latter of which was similar to the Sp1 sites in vertebrates. Specific binding of MNF1 to each of the supposed binding sites was confirmed with double-stranded monomers as probes. Considering native molecular mass of MNF1 (ca. 500 kDa), a protein complex is expected. In addition, MNF1 is anticipated to have two distinct DNA-binding proteins since the MNF1 binding to CCGCCC element was 1,10-phenanthroline-dependent whereas the MNF1 binding to the octamer was independent. Wide distribution of the MNF1 binding sequences within the 1 kb promoter region accounts for broad interactions of MNF1. Moreover, specific DNA binding due to MNF1, which was not observed in the nuclear extract derived from germinated and cultivated plants in darkness, appeared after a white-light pulse. This finding suggests the involvement of the protein complex in the light-dependent transcriptional control in the gene expression.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off