Identification of Potential Gene Network Associated with HCV-Related Hepatocellular Carcinoma Using Microarray Analysis

Identification of Potential Gene Network Associated with HCV-Related Hepatocellular Carcinoma... In order to identify potential specific gene networks of Hepatitis C virus (HCV) related hepatocellular carcinoma (HCC), weighted gene co-expression network analysis (WGCNA) was performed, which may provide an insight into the potential mechanism of the HCC development. HCV-related HCC and normal sample data were downloaded from GEO, T test of limma package was used to screen different expression genes (DEGs); KEGG pathway was used to analyze related biochemical pathways, and WGCNA was used to construct clustering trees and screen hub genes in the HCC-specific modules. A total of 1151 DEGs were authenticated between the HCC and normal liver tissue samples, including 433 upregulated and 718 downregulated genes. Among these genes, three specific modules of HCC were constructed, including Tan, Yellow and Cyan, but only Yellow module had a significant enrichment score in substance combination module with three hub genes: SLA2547, EFNA4 and MME. Although Tan and Cyan separately had four and three hub genes, but the bio-functions of them did not have significant enrichment scores (score < 2). SLA2547, EFNA4 and MME may play important roles in the substance combination of HCV-related HCC, so studying the function of this gene network may provide us a deeper understanding of HCV-related HCC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pathology & Oncology Research Springer Journals

Identification of Potential Gene Network Associated with HCV-Related Hepatocellular Carcinoma Using Microarray Analysis

Loading next page...
 
/lp/springer_journal/identification-of-potential-gene-network-associated-with-hcv-related-O1GkRFgvSq
Publisher
Springer Journals
Copyright
Copyright © 2017 by Arányi Lajos Foundation
Subject
Biomedicine; Cancer Research; Oncology; Pathology; Immunology; Biomedicine, general
ISSN
1219-4956
eISSN
1532-2807
D.O.I.
10.1007/s12253-017-0273-8
Publisher site
See Article on Publisher Site

Abstract

In order to identify potential specific gene networks of Hepatitis C virus (HCV) related hepatocellular carcinoma (HCC), weighted gene co-expression network analysis (WGCNA) was performed, which may provide an insight into the potential mechanism of the HCC development. HCV-related HCC and normal sample data were downloaded from GEO, T test of limma package was used to screen different expression genes (DEGs); KEGG pathway was used to analyze related biochemical pathways, and WGCNA was used to construct clustering trees and screen hub genes in the HCC-specific modules. A total of 1151 DEGs were authenticated between the HCC and normal liver tissue samples, including 433 upregulated and 718 downregulated genes. Among these genes, three specific modules of HCC were constructed, including Tan, Yellow and Cyan, but only Yellow module had a significant enrichment score in substance combination module with three hub genes: SLA2547, EFNA4 and MME. Although Tan and Cyan separately had four and three hub genes, but the bio-functions of them did not have significant enrichment scores (score < 2). SLA2547, EFNA4 and MME may play important roles in the substance combination of HCV-related HCC, so studying the function of this gene network may provide us a deeper understanding of HCV-related HCC.

Journal

Pathology & Oncology ResearchSpringer Journals

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off