Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii

Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas... Circadian rhythms are self-sustaining oscillations whose period length under constant conditions is about 24 h. Circadian rhythms are widespread and involve functions as diverse as human sleep-wake cycles and cyanobacterial nitrogen fixation. In spite of a long research history, knowledge about clock-controlled genes is limited in Chlamydomonas reinhardtii. Using a cDNA macroarray containing 10 368 nuclear-encoded genes, we examined global circadian regulation of transcription in Chlamydomonas. We identified 269 candidates for circadianly expressed gene. Northern blot analysis confirmed reproducible and sustainable rhythmicity for 12 genes. Most genes exhibited peak expression at the transition point between day and night. One hundred and eighteen genes were assigned predicted annotations. The functions of the cycling genes were diverse and included photosynthesis, respiration, cellular structure, and various metabolic pathways. Surprisingly, 18 genes encoding chloroplast ribosomal proteins showed a coordinated circadian pattern of expression and peaked just at the beginning of subjective day. The co-regulation of genes bearing a similar function was also observed in genes involved in cellular structure. They peaked at the end of the subjective night, which is when the regeneration of cell walls and flagella in daughter cells occurs. Expression of the chlamyopsin gene, which encodes an opsin-type photoreceptor, also exhibited circadian rhythm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii

Loading next page...
 
/lp/springer_journal/identification-of-novel-clock-controlled-genes-by-cdna-macroarray-P25WZLtY6o
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-3248-1
Publisher site
See Article on Publisher Site

Abstract

Circadian rhythms are self-sustaining oscillations whose period length under constant conditions is about 24 h. Circadian rhythms are widespread and involve functions as diverse as human sleep-wake cycles and cyanobacterial nitrogen fixation. In spite of a long research history, knowledge about clock-controlled genes is limited in Chlamydomonas reinhardtii. Using a cDNA macroarray containing 10 368 nuclear-encoded genes, we examined global circadian regulation of transcription in Chlamydomonas. We identified 269 candidates for circadianly expressed gene. Northern blot analysis confirmed reproducible and sustainable rhythmicity for 12 genes. Most genes exhibited peak expression at the transition point between day and night. One hundred and eighteen genes were assigned predicted annotations. The functions of the cycling genes were diverse and included photosynthesis, respiration, cellular structure, and various metabolic pathways. Surprisingly, 18 genes encoding chloroplast ribosomal proteins showed a coordinated circadian pattern of expression and peaked just at the beginning of subjective day. The co-regulation of genes bearing a similar function was also observed in genes involved in cellular structure. They peaked at the end of the subjective night, which is when the regeneration of cell walls and flagella in daughter cells occurs. Expression of the chlamyopsin gene, which encodes an opsin-type photoreceptor, also exhibited circadian rhythm.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 7, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off