Identification of key design characteristics for complex product adaptive design

Identification of key design characteristics for complex product adaptive design Key design characteristics (KDCs) are important information related to the product and part designs, which significantly influence on the product’s functions, performances, and quality. Identifying KDCs for a complex product will help designers to focus on key design parameters during the design process and rapidly obtain design schemes based on their close relationships to the product’s functions, performances, and quality. Although there are some researches on key characteristic (KC) identification, most of them are focused on key process characteristics (KPCs) and few on KDCs. There also lacks a KDC identification framework to support KDC identification with better completeness and diverse usages. Adaptive design is the most important pattern of complex product design. Therefore, this paper presents a systematic method to identify KDCs for complex product adaptive design, in which KDCs can be determined by two related phases. Firstly, a product design specification (PDS)-KDC Candidates Network (PKCN) is constructed by using existing product instance data, cluster analysis, KC flow-down, and network analysis approaches. Then, the result from the first phase is used as a basis to identify KDCs for adaptive design. Three KDC identification techniques: similarity reasoning technique, breadth-first search (BFS), and the gray relational analysis approach are applied to find out KDCs from the PKCN, which are the most sensitive to the variation of a PDS. These identified KDCs can help designers to understand the relationships between KDCs and PDS and rapidly develop a design scheme. The effectiveness and the feasibility of the proposed method are verified by a case study via the development of an electric multiple unit (EMU)’s bogie. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Identification of key design characteristics for complex product adaptive design

Loading next page...
 
/lp/springer_journal/identification-of-key-design-characteristics-for-complex-product-k5ACsxA0Qy
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1267-0
Publisher site
See Article on Publisher Site

Abstract

Key design characteristics (KDCs) are important information related to the product and part designs, which significantly influence on the product’s functions, performances, and quality. Identifying KDCs for a complex product will help designers to focus on key design parameters during the design process and rapidly obtain design schemes based on their close relationships to the product’s functions, performances, and quality. Although there are some researches on key characteristic (KC) identification, most of them are focused on key process characteristics (KPCs) and few on KDCs. There also lacks a KDC identification framework to support KDC identification with better completeness and diverse usages. Adaptive design is the most important pattern of complex product design. Therefore, this paper presents a systematic method to identify KDCs for complex product adaptive design, in which KDCs can be determined by two related phases. Firstly, a product design specification (PDS)-KDC Candidates Network (PKCN) is constructed by using existing product instance data, cluster analysis, KC flow-down, and network analysis approaches. Then, the result from the first phase is used as a basis to identify KDCs for adaptive design. Three KDC identification techniques: similarity reasoning technique, breadth-first search (BFS), and the gray relational analysis approach are applied to find out KDCs from the PKCN, which are the most sensitive to the variation of a PDS. These identified KDCs can help designers to understand the relationships between KDCs and PDS and rapidly develop a design scheme. The effectiveness and the feasibility of the proposed method are verified by a case study via the development of an electric multiple unit (EMU)’s bogie.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off