Identification of global marine hotspots: sentinels for change and vanguards for adaptation action

Identification of global marine hotspots: sentinels for change and vanguards for adaptation action Major changes consistent with the fingerprint of global warming have been reported for nearly every ecosystem on earth. Recently, studies have moved beyond correlation-based inference to demonstrate mechanistic links between warming and biological responses, particularly in regions experiencing rapid change. However, the assessment of climate change impacts and development of adaptation options that humans can undertake are at the earliest stages, particularly for marine systems. Here, we use trends in ocean temperature to characterize regions that can act as natural laboratories or focal points for early learning. These discrete marine ‘hotspots’, where ocean warming is fastest, were identified based on 50 years of historical sea surface temperature data. Persistence of these hotspots into the future was evaluated using global climate models. This analysis provides insights and a starting point for scientists aiming to identify key regions of concern with regard to ocean warming, and illustrates a potential approach for considering additional physical drivers of change such as ocean pH or oxygenation. We found that some hotspot regions were of particular concern due to other non-climate stressors. For instance, many of the marine hotspots occur where human dependence on marine resources is greatest, such as south-east Asia and western Africa, and are therefore of critical consideration in the context of food security. Intensive study and development of comprehensive inter-disciplinary networks based on the hotspot regions identified here will allow earliest testing of management and adaptation pathways, facilitating rapid global learning and implementation of adaptation options to cope with future change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Identification of global marine hotspots: sentinels for change and vanguards for adaptation action

Loading next page...
 
/lp/springer_journal/identification-of-global-marine-hotspots-sentinels-for-change-and-N6E1Y9H5fm
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-013-9326-6
Publisher site
See Article on Publisher Site

Abstract

Major changes consistent with the fingerprint of global warming have been reported for nearly every ecosystem on earth. Recently, studies have moved beyond correlation-based inference to demonstrate mechanistic links between warming and biological responses, particularly in regions experiencing rapid change. However, the assessment of climate change impacts and development of adaptation options that humans can undertake are at the earliest stages, particularly for marine systems. Here, we use trends in ocean temperature to characterize regions that can act as natural laboratories or focal points for early learning. These discrete marine ‘hotspots’, where ocean warming is fastest, were identified based on 50 years of historical sea surface temperature data. Persistence of these hotspots into the future was evaluated using global climate models. This analysis provides insights and a starting point for scientists aiming to identify key regions of concern with regard to ocean warming, and illustrates a potential approach for considering additional physical drivers of change such as ocean pH or oxygenation. We found that some hotspot regions were of particular concern due to other non-climate stressors. For instance, many of the marine hotspots occur where human dependence on marine resources is greatest, such as south-east Asia and western Africa, and are therefore of critical consideration in the context of food security. Intensive study and development of comprehensive inter-disciplinary networks based on the hotspot regions identified here will allow earliest testing of management and adaptation pathways, facilitating rapid global learning and implementation of adaptation options to cope with future change.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Sep 24, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off