Identification of genomic locus responsible for experimentally induced testicular teratoma 1 (ett1) on mouse Chr 18

Identification of genomic locus responsible for experimentally induced testicular teratoma 1... Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene “experimental testicular teratoma 1 (ett1)”. To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Identification of genomic locus responsible for experimentally induced testicular teratoma 1 (ett1) on mouse Chr 18

Loading next page...
 
/lp/springer_journal/identification-of-genomic-locus-responsible-for-experimentally-induced-FVHw8VqKWp
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-014-9529-8
Publisher site
See Article on Publisher Site

Abstract

Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene “experimental testicular teratoma 1 (ett1)”. To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs.

Journal

Mammalian GenomeSpringer Journals

Published: Jul 5, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off