Identification of genes preferentially expressed during wood formation in Eucalyptus

Identification of genes preferentially expressed during wood formation in Eucalyptus Wood is the most abundant biological resource on earth and it is also an important raw material for a major global industry with rapidly increasing demand. The genus Eucalyptus includes the most widely used tree species for industrial plantation, mainly for making pulp and paper. With the aim of identifying major genes involved in wood formation in Eucalyptus, we have developed a targeted approach of functional genomics based on the isolation of xylem preferentially expressed genes by subtractive PCR. Transcript profiling using cDNA arrays and analysis of variance (ANOVA) were used to identify differentially expressed ESTs between secondary xylem and leaves. Real-time RT-PCR was performed to confirm the differential expression of representative EST. Of 224 independent EST sequences obtained, 81% were preferentially expressed in xylem. One-third of the ESTs exhibiting homologies with proteins of known function fell into two main classes highlighting the importance of the auxin signalling through ubiquitin-dependent proteolysis on one hand, and of the enzymes involved in cell wall biosynthesis and remodelling, on the other. The functions of the genes represented by the remaining 61% of ESTs should be of great interest for future research. This systematic analysis of genes involved in wood formation in Eucalyptus provides valuable insights into the molecular mechanisms involved in secondary xylem differentiation as well as new candidate-genes for wood quality improvement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of genes preferentially expressed during wood formation in Eucalyptus

Loading next page...
 
/lp/springer_journal/identification-of-genes-preferentially-expressed-during-wood-formation-0oY73gXHOC
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-0621-4
Publisher site
See Article on Publisher Site

Abstract

Wood is the most abundant biological resource on earth and it is also an important raw material for a major global industry with rapidly increasing demand. The genus Eucalyptus includes the most widely used tree species for industrial plantation, mainly for making pulp and paper. With the aim of identifying major genes involved in wood formation in Eucalyptus, we have developed a targeted approach of functional genomics based on the isolation of xylem preferentially expressed genes by subtractive PCR. Transcript profiling using cDNA arrays and analysis of variance (ANOVA) were used to identify differentially expressed ESTs between secondary xylem and leaves. Real-time RT-PCR was performed to confirm the differential expression of representative EST. Of 224 independent EST sequences obtained, 81% were preferentially expressed in xylem. One-third of the ESTs exhibiting homologies with proteins of known function fell into two main classes highlighting the importance of the auxin signalling through ubiquitin-dependent proteolysis on one hand, and of the enzymes involved in cell wall biosynthesis and remodelling, on the other. The functions of the genes represented by the remaining 61% of ESTs should be of great interest for future research. This systematic analysis of genes involved in wood formation in Eucalyptus provides valuable insights into the molecular mechanisms involved in secondary xylem differentiation as well as new candidate-genes for wood quality improvement.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off