Identification of Ferredoxin-Dependent Cyclic Electron Transport around Photosystem I Using the Kinetics of Dark P700+ Reduction

Identification of Ferredoxin-Dependent Cyclic Electron Transport around Photosystem I Using the... Kinetic curves of absorbance changes induced by far-red light (FR, 830 nm) (ΔA 830), which reflect redox transformations of PSI primary electron donor, P700, were examined in intact barley (Hordeum vulgare L.) leaves. In intact leaves, FR induced the biphasic increase in absorbance related to P700 photooxidation. Leaf treatment with methyl viologen or antimycin A suppressed the slow phase of P700 photooxidation, which was attained in such leaves within the first second of light exposure. With FR turned off, the previously increased absorbance at 830 nm dropped down to its initial level, thus reflecting P700+ reduction. In the control leaves, the kinetics of P700+ reduction consisted of three exponentially decaying components, with the corresponding half-times of 8.8 s (the slow component, with its magnitude comprising 24% of the total ΔA 830 signal), 0.73 s (the middle component, 49% of ΔA 830), and 0.092 s (the fast component, 26% of ΔA 830). The rate of the fast component of P700+ reduction, following FR irradiation of leaves, was about ten times lower than that of the noncyclic electron transfer from PSII to PSI computed from ΔA 830 relaxation after the abrupt offset of white light. The treatment of leaves with methyl viologen or antimycin A completely abolished the fast component of ΔA 830 relaxation after FR exposure. It was concluded that the fast component is determined by the operation of ferredoxin-dependent cyclic electron transport around PSI. This study represents the first report on the identification of this pathway of electron transport in vivo and the estimation of its rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Identification of Ferredoxin-Dependent Cyclic Electron Transport around Photosystem I Using the Kinetics of Dark P700+ Reduction

Loading next page...
 
/lp/springer_journal/identification-of-ferredoxin-dependent-cyclic-electron-transport-MYx4qsFeGr
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0042-5
Publisher site
See Article on Publisher Site

Abstract

Kinetic curves of absorbance changes induced by far-red light (FR, 830 nm) (ΔA 830), which reflect redox transformations of PSI primary electron donor, P700, were examined in intact barley (Hordeum vulgare L.) leaves. In intact leaves, FR induced the biphasic increase in absorbance related to P700 photooxidation. Leaf treatment with methyl viologen or antimycin A suppressed the slow phase of P700 photooxidation, which was attained in such leaves within the first second of light exposure. With FR turned off, the previously increased absorbance at 830 nm dropped down to its initial level, thus reflecting P700+ reduction. In the control leaves, the kinetics of P700+ reduction consisted of three exponentially decaying components, with the corresponding half-times of 8.8 s (the slow component, with its magnitude comprising 24% of the total ΔA 830 signal), 0.73 s (the middle component, 49% of ΔA 830), and 0.092 s (the fast component, 26% of ΔA 830). The rate of the fast component of P700+ reduction, following FR irradiation of leaves, was about ten times lower than that of the noncyclic electron transfer from PSII to PSI computed from ΔA 830 relaxation after the abrupt offset of white light. The treatment of leaves with methyl viologen or antimycin A completely abolished the fast component of ΔA 830 relaxation after FR exposure. It was concluded that the fast component is determined by the operation of ferredoxin-dependent cyclic electron transport around PSI. This study represents the first report on the identification of this pathway of electron transport in vivo and the estimation of its rate.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 19, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off