Identification of Ether à Go-Go and Calcium-Activated Potassium Channels in Human Melanoma Cells

Identification of Ether à Go-Go and Calcium-Activated Potassium Channels in Human Melanoma Cells Ion channels and intracellular Ca2+ are thought to be involved in cell proliferation and may play a role in tumor development. We therefore characterized Ca2+-regulated potassium channels in the human melanoma cell lines IGR1, IPC298, and IGR39 using electrophysiological and molecular biological methods. All cell lines expressed outwardly rectifying K+ channels. Rapidly activating delayed rectifier channels were detected in IGR39 cells. The activation kinetics of voltage-gated K+ channels in IRG1 and IPC298 cells displayed characteristics of ether à go-go (eag) channels as they were much slower and depended both on the holding potential and on extracellular Mg2+. In addition, they could be blocked by physiological concentrations of intracellular Ca2+. In accordance with these electrophysiological results, analysis of mRNA revealed the expression of a gene coding for h-eag1 channels in IGR1 and IPC298 cells, but not in IGR39 cells. At elevated Ca2+ concentrations various types of Ca2+-activated K+ channels with single-channel characteristics similar to IK and SK channels were detected in IGR1 cells. The whole-cell Ca2+-activated K+ currents were not voltage dependent, insensitive for 100 nm apamin and 200 μm d-tubocurarine, but were blocked by charybdotoxin (100 nm) and clotrimazole (50 nm). Analysis of mRNA revealed the expression of hSK1, hSK2, and hIK channels in IGR1 cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Identification of Ether à Go-Go and Calcium-Activated Potassium Channels in Human Melanoma Cells

Loading next page...
 
/lp/springer_journal/identification-of-ether-go-go-and-calcium-activated-potassium-channels-Ks9UWvgqYV
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900563
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial