Identification of differentially expressed genes in Alternanthera philoxeroides under drought stress using suppression subtractive hybridization

Identification of differentially expressed genes in Alternanthera philoxeroides under drought... The current study was conducted by using suppression subtractive hybridization (SSH) to identify the differentially expressed genes in Alternanthera philoxeroides under drought stress and thus to explore the molecular mechanisms of drought tolerance. The mRNA was extracted from the roots of drought-treated and well-watered A. philoxeroides to construct SSH cDNA library. Positive clones were selected for sequencing and further analyzed by BLAST for screening non-redundant and homologous expressed sequence tags (ESTs). Then these ESTs were put into the Gene Ontology database for functional annotation and Kyoto Encylopedia of Genes and Genomes (KEGG) for metabolic pathways analysis. Four cDNA fragments, ZFP (zinc finger protein), HSP70 (heat shock protein 70), CAT (catalase), and TPS (trehalose-6-phosphate synthase), were randomly chosen for RT-PCR analysis. In the SSH cDNA library, 286 positive clones picked up randomly were sequenced and finally 269 sequences were available. After cluster analysis of the ESTs, 82 unigenes were obtained, in which 63 genes displayed a high homology to known sequences. KEGG analysis found that these genes were involved in 14 metabolic pathways, such as the pathways of plant hormone signal transduction and biosynthesis of secondary metabolites. The expressions of the above four cDNA fragments were all up-regulated in A. philoxeroides under drought stress. This study presented a basis forbstudying the drought tolerance mechanism of A. philoxeroides, which provided a theoretical basis for managing the spread of this plant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Identification of differentially expressed genes in Alternanthera philoxeroides under drought stress using suppression subtractive hybridization

Loading next page...
 
/lp/springer_journal/identification-of-differentially-expressed-genes-in-alternanthera-vddxHnYTWL
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715010094
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial