Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation

Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential... Cellulose is central to plant development and is synthesised at the plasma membrane by an organised protein complex that contains three different cellulose synthase proteins. The ordered assembly of these three catalytic subunits is essential for normal cellulose synthesis. The way in which the relative levels of these three proteins are regulated within the cell is currently unknown. In this work it is shown that one of the cellulose synthases essential for secondary cell wall cellulose synthesis in Arabidopsis thaliana, AtCesA7, is phosphorylated in vivo. Analysis of in vivo phosphorylation sites by mass spectrometry reveals that two serine residues are phosphorylated. These residues occur in a region of hyper-variability between the cellulose synthase catalytic subunits. The region of the protein containing these phosphorylation sites can be phosphorylated by a plant extract in vitro. Incubation of this region with plant extracts results in its degradation via a proteasome dependant pathway. Full length endogenous CesA7 is also degraded via a proteasome dependant pathway in whole plant extracts. This data suggests that phosphorylation of the catalytic subunits may target them for degradation via a proteasome dependant pathway. This is a possible mechanism by which plants regulate the relative levels of the three proteins whose specific interaction are required to form an active cellulose synthase complex. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation

Loading next page...
 
/lp/springer_journal/identification-of-cellulose-synthase-atcesa7-irx3-in-vivo-h3wUUwDx8z
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9142-2
Publisher site
See Article on Publisher Site

Abstract

Cellulose is central to plant development and is synthesised at the plasma membrane by an organised protein complex that contains three different cellulose synthase proteins. The ordered assembly of these three catalytic subunits is essential for normal cellulose synthesis. The way in which the relative levels of these three proteins are regulated within the cell is currently unknown. In this work it is shown that one of the cellulose synthases essential for secondary cell wall cellulose synthesis in Arabidopsis thaliana, AtCesA7, is phosphorylated in vivo. Analysis of in vivo phosphorylation sites by mass spectrometry reveals that two serine residues are phosphorylated. These residues occur in a region of hyper-variability between the cellulose synthase catalytic subunits. The region of the protein containing these phosphorylation sites can be phosphorylated by a plant extract in vitro. Incubation of this region with plant extracts results in its degradation via a proteasome dependant pathway. Full length endogenous CesA7 is also degraded via a proteasome dependant pathway in whole plant extracts. This data suggests that phosphorylation of the catalytic subunits may target them for degradation via a proteasome dependant pathway. This is a possible mechanism by which plants regulate the relative levels of the three proteins whose specific interaction are required to form an active cellulose synthase complex.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 16, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off